With the development of airborne radar radio frequency stealth (RFS) technology, the method of improving the RFS performance of airborne radar by optimizing target detection performance has been extensively studied. However, for wideband radar signals, the traditional point target model appears as an extended target model in the range-dimension, which is unfavorable to the detection of target echoes. To overcome the existing drawbacks, this paper devises an efficient echo detection algorithm from the perspective of information theory and random matrix. Firstly, aperiodic agile wideband radar signals are utilized to observe targets. Then, one frame of echo signals in the same range gate is reconstructed into a data form conforming to the Wigner matrix spectral decomposition. Finally, according to the signal detection theory, Kullback-Leibler Divergence (KLD) is used as the test statistic to complete the echo detection of the stealthy extended targets. By statistical analysis and comparison with other established echo detection algorithms, simulation results manifest that the proposed algorithm has superior detection performance and strong robustness, which not only makes up for the deficiency of traditional narrowband radar detection algorithms, but also increases the detection probability of radar system when it is faced with stealthy extended targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.