Water-soluble polymers are known to be used in chemically enhanced oil recovery (EOR) processes, but their applications are limited in high-temperature and high-salinity oil reservoirs because of their inherent poor salt tolerance and weak thermal stability. Hydrophobic association of partially hydrolyzed polyacryamide (HAHPAM) complexed with silica nanoparticles to prepare nano-hybrids is reported in this work. The rheological and enhanced oil recovery (EOR) properties of such hybrids were studied in comparison with HAHPAM under simulated high-temperature and high-salinity oil reservoir conditions (T: 85 °C; total dissolved solids: 32,868 mg873 mg•L −1 ). It was found that the apparent viscosity and elastic modulus of HAHPAM solutions increased with addition of silica nanoparticles, and HAHPAM/silica hybrids exhibit better shear resistance and long-term thermal stability than HAHPAM in synthetic brine. Moreover, core flooding tests show that HAHPAM/silica hybrid has a higher oil recovery factor than HAHPAM solution.
Organic/inorganic hybrid aqueous solutions were prepared by mixing silica nanoparticle suspension and hydrophobically associating polyacrylamide (HAPAM) solution, and their rheological behaviors were examined in both pure water and brine in comparison with HAPAM. It was found that HAPAM/silica hybrid exhibits viscosity enhancement in aqueous solution and better heat-and salt-tolerances than HAPAM. Meanwhile, their long-term thermal stability is also improved. Cryo-TEM observation reveals that a reinforced threedimensional network structure of HAPAM/silica hybrid is formed. These improved properties are attributed to the formed hydrogen bond between carbonyl groups in HAPAM skeleton and silanol functionalities in silica nanoparticles in the hybrid system, and the silica nanoparticles in the hybrid act as physical crosslinkers between macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.