Background: Benzobicyclon (BBC) is a β-triketone herbicide (bTH) used in rice paddy fields. It has the advantages of high efficiency, low toxicity, high crop safety, and good environmental compatibility, and shows efficacy against paddy weeds resistant to other types of herbicides. However, as some important indica rice varieties are susceptible to BBC, BBC is currently only registered and applied in japonica rice cultivation areas.Results: By analyzing haplotypes of the bTHs broad-spectrum resistance gene HIS1 and phenotypes for BBC in 493 major indica rice accessions in China, we identified a novel non-functional allelic variant of HIS1 in addition to the previously reported 28-bp deletion. Through detection with markers specific to the two non-functional mutations, it was clear that 25.4% of indica conventional varieties, 59.9% of restorers, and 15.9% of sterile lines were susceptible to BBC. In addition, due to natural allelic variations of the HIS1 gene in the sterile and restorer lines, some two-line hybrid sterile lines were sensitive to bTHs, and the corresponding restorers were resistant. We showed the potential effectiveness of using bTHs to address the issue of two-line hybrid rice seed purity stemming from the self-crossing of sterile lines during hybrid rice seed production. Finally, allelic variations of the HIS1 gene may also play an important role in the mechanized seed production of hybrid rice.Conclusions: Our findings offer guidance for the application of BBC in indica rice areas and provide a non-transgenic approach to address the seed purity issue of two-line hybrid rice.
Background: Benzobicyclon (BBC) is a β-triketone herbicide (bTH) used in rice paddy fields. It has the advantages of high efficiency, low toxicity, high crop safety, and good environmental compatibility, and shows efficacy against paddy weeds resistant to other types of herbicides. However, as some important indica rice varieties are susceptible to BBC, BBC is currently only registered and applied in japonica rice cultivation areas.Results: By analyzing haplotypes of the bTHs broad-spectrum resistance gene HIS1 and phenotypes for BBC in 493 major indica rice accessions in China, we identified a novel non-functional allelic variant of HIS1 in addition to the previously reported 28-bp deletion. Through detection with markers specific to the two non-functional mutations, it was clear that 25.4% of indica conventional varieties, 59.9% of fertility restorers, and 15.9% of sterile lines were susceptible to BBC. In addition, due to natural allelic variations of the HIS1 gene in the sterile and restorer lines, some two-line hybrid sterile lines were sensitive to bTHs, and the corresponding restorers were resistant. We showed the potential effectiveness of using bTHs to address the issue of two-line hybrid rice seed purity stemming from the self-crossing of sterile lines during hybrid rice seed production. Finally, allelic variations of the HIS1 gene may also play an important role in the mechanized seed production of hybrid rice.Conclusions: Our findings offer guidance for the application of BBC in indica rice areas and provide a non-transgenic approach to address the seed purity issue of two-line hybrid rice.
Climate change has caused high salinity in many fields, particularly in the mud flats in coastal regions. The resulting salinity has become one of the most significant abiotic stresses affecting the world’s rice crop productivity. Developing elite cultivars with novel salinity-tolerance traits is regarded as the most cost-effective and environmentally friendly approach for utilizing saline-alkali land. To develop a highly efficient green strategy and create novel rice germplasms for salt-tolerant rice breeding, this study aimed to improve rice salinity tolerance by combining targeted CRISPR/Cas9-mediated editing of the OsRR22 gene with heterosis utilization. The novel alleles of the genic male-sterility (GMS) and elite restorer line (733Srr22-T1447-1 and HZrr22-T1349-3) produced 110 and 1 bp deletions at the third exon of OsRR22 and conferred a high level of salinity tolerance. Homozygous transgene-free progeny were identified via segregation in the T2 generation, with osrr22 showing similar agronomic performance to wild-type (733S and HZ). Furthermore, these two osrr22 lines were used to develop a new promising third-generation hybrid rice line with novel salinity tolerance. Overall, the results demonstrate that combining CRISPR/Cas9 targeted gene editing with the “third-generation hybrid rice system” approach allows for the efficient development of novel hybrid rice varieties that exhibit a high level of salinity tolerance, thereby ensuring improved cultivar stability and enhanced rice productivity.
Background Benzobicyclon (BBC) is a β-triketone herbicide (bTH) used in rice paddy fields. It has the advantages of high efficiency, low toxicity, high crop safety, and good environmental compatibility, and shows efficacy against paddy weeds resistant to other types of herbicides. However, because BBC is not safe for some important indica rice varieties, it is currently only registered and applied in japonica rice areas. Results In this study, by analyzing haplotypes of the bTHs broad-spectrum resistance gene HIS1 and phenotypes for BBC in 493 major indica rice accessions in China, we identified a novel non-functional allelic variant of HIS1 besides the previously reported 28-bp deletion. Through detection with markers specific to the two non-functional mutations, it was clear that 25.4% of indica conventional varieties, 59.9% of restorers and 15.9% of sterile lines were susceptible to BBC. In addition, due to natural allelic variations of the HIS1 gene in sterile and restorer lines, some two-line hybrid sterile lines were sensitive to bTHs, and the corresponding restorers were resistant. We showed the potential of effectively using bTHs to solve the problem of two-line hybrid rice seed purity due to self-crossing of sterile lines during hybrid rice seed production. Finally, allelic variations of the HIS1 gene may also play an important role in the mechanized seed production of hybrid rice. Conclusions Our findings provide guidance for the application of BBC in indica rice areas, and provide a non-transgenic approach to solve the problem of seed purity of two-line hybrid rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.