In contrast to the many methods of selectively coupling olefins, few protocols catenate saturated hydrocarbons in a predictable manner. We report here the highly selective carbon-hydrogen (C-H) activation and subsequent dehydrogenative C-C coupling reaction of long-chain (>C(20)) linear alkanes on an anisotropic gold(110) surface, which undergoes an appropriate reconstruction by adsorption of the molecules and subsequent mild annealing, resulting in nanometer-sized channels (1.22 nanometers in width). Owing to the orientational constraint of the reactant molecules in these one-dimensional channels, the reaction takes place exclusively at specific sites (terminal CH(3) or penultimate CH(2) groups) in the chains at intermediate temperatures (420 to 470 kelvin) and selects for aliphatic over aromatic C-H activation.
The narrowest armchair graphene nanoribbon (AGNR) with five carbons across the width of the GNR (5-AGNR) was synthesized on Au(111) surfaces via sequential dehalogenation processes in a mild condition by using 1,4,5,8-tetrabromonaphthalene as the molecular precursor. Gold-organic hybrids were observed by using high-resolution scanning tunneling microscopy and considered as intermediate states upon AGNR formation. Scanning tunneling spectroscopy reveals an unexpectedly large band gap of Δ = 2.8 ± 0.1 eV on Au(111) surface which can be interpreted by the hybridization of the surface states and the molecular states of the 5-AGNR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.