A permanent magnet Brushless DC (BLDC) motor has been designed with different rotor configurations based on the arrangement of the permanent magnets. Rotor configurations strongly affect the torque and efficiency performance of permanent magnet electric motors. In this paper, different rotor configurations of the permanent magnet BLDC motor with parallel the Halbach array permanent magnet were compared and evaluated. Many applications of electric drives or air-crafts have recently preferred the surface-mounted permanent magnet design due to its ease of construction and maintenance. The finite element technique has been used for the analysis and comparison of different geometry parameters and rotor magnet configurations to improve efficiency and torque performance. A comprehensive design of a three-phase permanent magnet BLDC 35kW motor is presented and simulations were conducted to evaluate its design. The skewing rotor and Halbach magnet array are applied to the permanent surface-mounted magnet on the BLDC motor for eliminating torque ripples. In order to observe the skewing rotor effect, the rotor lamination layers were skewed with different angles and Halbach sinusoidal arrays. The determined skewing angle, the eliminated theoretically cogging torque, and the back electromotive force harmonics were also analyzed.
This paper presents the harmonic torque reduction by the different rotor pole angles of a three-phase 12/8 switched reluctance motor via an analytical model and simulation method. Improving torque performance by stator and rotor angles was applied for three-phase switched reluctance motor at stator pole/rotor pole ratios of 6/4, 8/12, 18/12, and 24/18. The average torque and the torque ripple effect by stator and rotor pole embrace have been recently studied in many projects. Due to the fact that leakage flux, flux density, and inductance are affected by the stator and rotor pole angles non-linear and linear leakage flux curves occur. Many stator and rotor pole angle combinations for the three-phase switched reluctance motor have already been done via a finite element method. In this paper, turn-on and turn-off angles will be figured based on stator and rotor pole embraces.
This paper has developed electromagnetic equations based an analytical model to design a three-phase line start permanent magnet synchronous motor (LSPMSM) of 2.2 kW. In order to enhance the torque and efficiency of this machine, an optimized slot shape of rotor permanent magnet is proposed. The analytical model is first presented to evaluate the magnetic characteristics, and then analytical expressions are derived under the open circuit condition. The influence of the magnet size variables on the analytical model is considered to investigate the magnetic leakage flux and flux density distribution in air gaps. Moreover, the variation of design has a significant impact on the steady-state performance characteristics of this motor. In addition, in order to check the output results from the analytical model, a finite element method is developed to evaluate these solutions. Finally, experimental and simulation results have been compared and analyzed to validate the development of method.
Magnetic fields and the shielding efficiency of the shields of underground high voltage cables are studied in this paper regarding several shielding configurations and materials. Shielding efficiency and magnetic fields are computed for shields with the same mesh but from different shielding materials, such as aluminum, ferrite, metal, and steel. In order to get the best shield configuration depending on the source characteristics and the material, a conducting ferromagnetic region with various thickness values is considered as shielding. A finite element model is introduced to investigate the influence of the parameters of magnetic fields and the shielding efficiency of underground high voltage cables. Furthermore, the reduction of the magnetic fields with or without shieldings is also presented. The developed method is performed with the magnetic vector potential formulations and validated on a practical problem.
This paper analyzes the electromagnetic and thermal design of interior permanent magnet motors using filled slots and hairpin windings for electric vehicle applications. Two models of ∇ shape of the interior permanent magnet motors have been proposed to evaluate the temperature distribution and cogging torque performance. A narrow opening slot of the interior permanent magnet of 48 slots/8 poles with the filled winding has been designed to investigate the electromagnetic torque because the cogging torque depends on opening stator slots. A parallel–rectangle slot of the interior permanent magnet with the hairpin winding has been also implemented with finite element analysis to evaluate their performances. Normally, the slot opening of the interior permanent magnet stator equals the slot width, it is greater than the size of hairpin windings, and the cogging torque is increased significantly with a bigger slot opening. The main advantage of the hairpin winding design is the high slot fill factors. Hence, the lower the current density, the higher torque, and efficiency are, than the normal design with the same geometry parameters. To improve the cogging torque due to the wide slot opening, the step–skew rotor slices have been arranged to minimize the torque ripple with different skewing angles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.