Our goal is to establish some sufficient conditions for the solvability of the nonlocal final value problem involving a class of partial differential equations, which describes the anomalous diffusion phenomenon. Our analysis is based on the theory of completely positive functions, resolvent operators and fixed point arguments in suitable function spaces. Especially, utilizing the regularity of resolvent operators, we are able to deal with non-Lipschitz cases. The obtained results, in particular, extend recent ones proved for fractional diffusion equations.
<p style='text-indent:20px;'>We study a class of nonlocal partial differential equations with nonlinear perturbations, which is a general model for some equations arose from fluid dynamics. Our aim is to analyze some sufficient conditions ensuring the global solvability, regularity and stability of solutions. Our analysis is based on the theory of completely positive kernel functions, local estimates and a new Gronwall type inequality.</p>
We deal with the Cauchy problem associated with integro-differential inclusions of diffusion-wave type involving infinite delays. Based on the behavior of resolvent operator associated with the linear part, an explicit estimate for solutions will be established. As a consequence, the weak stability of zero solution is proved in case the resolvent operator is asymptotically stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.