Using hand gestures is a natural method of interaction between humans and computers. We use gestures to express meaning and thoughts in our everyday conversations. Gesture-based interfaces are used in many applications in a variety of fields, such as smartphones, televisions (TVs), video gaming, and so on. With advancements in technology, hand gesture recognition is becoming an increasingly promising and attractive technique in human–computer interaction. In this paper, we propose a novel method for fingertip detection and hand gesture recognition in real-time using an RGB-D camera and a 3D convolution neural network (3DCNN). This system can accurately and robustly extract fingertip locations and recognize gestures in real-time. We demonstrate the accurateness and robustness of the interface by evaluating hand gesture recognition across a variety of gestures. In addition, we develop a tool to manipulate computer programs to show the possibility of using hand gesture recognition. The experimental results showed that our system has a high level of accuracy of hand gesture recognition. This is thus considered to be a good approach to a gesture-based interface for human–computer interaction by hand in the future.
A real-time fingertip-gesture-based interface is still challenging for human–computer interactions, due to sensor noise, changing light levels, and the complexity of tracking a fingertip across a variety of subjects. Using fingertip tracking as a virtual mouse is a popular method of interacting with computers without a mouse device. In this work, we propose a novel virtual-mouse method using RGB-D images and fingertip detection. The hand region of interest and the center of the palm are first extracted using in-depth skeleton-joint information images from a Microsoft Kinect Sensor version 2, and then converted into a binary image. Then, the contours of the hands are extracted and described by a border-tracing algorithm. The K-cosine algorithm is used to detect the fingertip location, based on the hand-contour coordinates. Finally, the fingertip location is mapped to RGB images to control the mouse cursor based on a virtual screen. The system tracks fingertips in real-time at 30 FPS on a desktop computer using a single CPU and Kinect V2. The experimental results showed a high accuracy level; the system can work well in real-world environments with a single CPU. This fingertip-gesture-based interface allows humans to easily interact with computers by hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.