Flash floods have long been common in Asian cities, with recent increases in urbanization and extreme rainfall driving increasingly severe and frequent events. Floods in urban areas cause significant damage to infrastructure, communities and the environment. Numerical modelling of flood inundation offers detailed information necessary for managing flood risk in such contexts. This study presents a calibrated flood inundation model using referenced photos, an assessment of the influence of four extreme rainfall events on water depth and inundation area in the Hanoi central area. Four types of historical and extreme rainfall were input into the inundation model. The modeled results for a 2008 flood event with 9 referenced stations resulted in an R2 of 0.6 compared to observations. The water depth at the different locations was simulated under the four extreme rainfall types. The flood inundation under the Probable Maximum Precipitation presents the highest risk in terms of water depth and inundation area. These results provide insights into managing flood risk, designing flood prevention measures, and appropriately locating pump stations.
Gridded precipitation products (GPPs) with wide spatial coverage and easy accessibility are well recognized as a supplement to ground-based observations for various hydrological applications. The error properties of satellite rainfall products vary as a function of rainfall intensity, climate region, altitude, and land surface conditions—all factors that must be addressed prior to any application. Therefore, this study aims to evaluate four commonly used GPPs: the Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Global Daily Precipitation, the Climate Prediction Center Morphing (CMORPH) technique, the Tropical Rainfall Measuring Mission (TRMM) 3B42, and the Global Satellite Mapping of Precipitation (GSMaP), using data collected in the period 1998–2006 at different spatial and temporal scales. Furthermore, this study investigates the hydrological performance of these products against the 175 rain gauges placed across the whole Mekong River Basin (MRB) using a set of statistical indicators, along with the Soil and Water Assessment Tool (SWAT) model. The results from the analysis indicate that TRMM has the best performance at the annual, seasonal, and monthly scales, but at the daily scale, CPC and GSMaP are revealed to be the more accurate option for the Upper MRB. The hydrological evaluation results at the daily scale further suggest that the TRMM is the more accurate option for hydrological performance in the Lower MRB, and CPC shows the best performance in the Upper MRB. Our study is the first attempt to use distinct suggested GPPs for each individual sub-region to evaluate the water balance components in order to provide better references for the assessment and management of basin water resources in data-scarce regions, suggesting strong capabilities for utilizing publicly available GPPs in hydrological applications.
Tea is one of the most significant cash crops and plays an important role in economic development and poverty reduction. On the other hand, tea is an optimal choice in the extreme weather conditions of Tanuyen Laichau, Vietnam. In our study, the NDVI variation of tea in the growing season from 2009 to 2018 was showed by calculating NDVI trend and the Mann-Kendall analysis to assess trends in the time series. Support Vector Machine (SVM) and Random Forest (RF) model were used for predicting tea yield. The NDVI of tea showed an increasing trend with a slope from −0.001–0.001 (88.9% of the total area), a slope from 0.001–0.002 (11.1% of the total area) and a growing rate of 0.00075/year. The response of tea NDVI to almost climatic factor in a one-month time lag is higher than the current month. The tea yield was estimated with higher accuracy in the RF model. Among the input variables, we detected that the role of Tmean and NDVI is stronger than other variables when squared with each of the independent variables into input data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.