<span lang="EN">The rise of Internet access, social media and availability of smart phones intensify the epidemic of pornography addiction especially among younger teenagers. Such scenario may offer many side effects to the individual such as alteration of the behavior, changes in moral value and rejection to normal community convention. Hence, it is imperative to detect pornography addiction as early as possible. In this paper, a method of using brain signal from frontal area captured using EEG is proposed to detect whether the participant may have porn addiction or otherwise. It acts as a complementary approach to common psychological questionnaire. Experimental results show that the addicted participants had low alpha waves activity in the frontal brain region compared to non-addicted participants. It can be observed using power spectra computed using Low Resolution Electromagnetic Tomography (LORETA). The theta band also show there is disparity between addicted and non-addicted. However, the distinction is not as obvious as alpha band. Subsequently, more work need to be conducted to further test the validity of the hypothesis. It is envisaged that with more participants and further investigation, the proposed method will be the initial step to groundbreaking way of understanding the way porn addiction affects the brain.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.