Two donor-π-spacer-acceptor (D-π-A) organic dyes were designed as photochromic dyes with the same π-spacer and acceptor but different donors, based on their electron-donating strength. Various structural, electronic, and optical properties, chemical reactivity parameters, and certain crucial factors that affect short-circuit current density (Jsc) and open circuit voltage (Voc) were investigated computationally using density functional theory and time-dependent density functional theory. The trans-cis isomerization of these azobenzene-based dyes and its effect on their properties was studied in detail. Furthermore, the dye-(TiO2)9 anatase nanoparticle system was simulated to understand the electronic structure of the interface. Based on the results, we justified how the trans-cis isomerization and different donor groups influence the physical properties as well as the photovoltaic performance of the resultant dye-sensitized solar cells (DSSCs). These theoretical calculations can be used for the rapid screening of promising dyes and their optimization for photochromic DSSCs.
A series of donor–π-conjugated spacer–acceptor (D–π–A) organic dyes featuring an azobenzene spacer were designed as chromic dyes and investigated computationally. The electron-donating strength was modified by introducing electron-donating units to the donor side. In particular, the trans–cis isomerization of the azobenzene-based dyes and its effect on the optical and electronic properties were further scrutinized. In both trans and cis conformers, a gradual increase in electron-donating strength promoted the natural charge separation between donor and acceptor moieties, thereby allowing the absorption of a longer wavelength of visible light. Importantly, the conformational change of the azobenzene bridge resulted in different absorption spectra and light-harvesting properties. The azobenzene-based dyes will open up a new research path for chromic dye-sensitized solar cells.
Naturally abundant dyes are very attractive for the development of dye-sensitized solar cells (DSSCs). Hydroxycinnamic acid derivatives, such as caffeic acid (CA), ferulic acid (FA), and p-coumaric acid (PA), were considered for the selective harvesting of ultraviolet A (UVA) (315–400 nm) photons. Their spectroscopic and electrochemical properties were investigated both theoretically and experimentally. They were further successfully adopted as photosensitizers in UV-selective and visibly transparent DSSCs, which exhibited a power conversion efficiency of 0.22–0.38% under AM (air mass) 1.5G (global) illumination (100 mW/cm2) and 3.40–3.62% under UVA irradiation (365 nm, 115.22 mW/cm2), with a corresponding visible light transmittance (VLT) of 49.07–43.72% and a general color rendering index (Ra) of 93–90.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.