System integrity protection schemes (SIPS) supported by phasor measurement unit (PMU) technology are based on the concept of collecting information from remote stations, sending the information to a central concentrator that executes a decision-making algorithm and initiates specialized actions to prevent the spread of system disturbance. This paper gives application of overload mitigation SIPS. Described protection scheme is based on a mixed integer linear programming (MILP) optimization of the DC power flow model whose objective is to maximize total load on the observed part of the network. Inaccuracy of the used DC model and the actual state is replaced by using the PMU technology. In this way, the influence of reactive power that is ignored in the DC model power flow model calculation is replaced in real-time with real synchronized measurements. Described SIPS is tested on IEEE 14 busbar test system. Conducted simulations indicate that developed optimization algorithm can mitigate potential element overloads with extremely high accuracy by using load shedding methods. Example on real part of Croatian power transmission network is given at the end of paper. This specific analysis demonstrates benefits of using SIPS based on synchro phasors in real world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.