The classical purpose of optical fibres is delivery of either optical power, as for welding, or temporal information, as for telecommunication. Maximum performance in both cases is provided by the use of single-mode optical fibres. However, transmitting spatial information, which necessitates higher-order modes, is difficult because their dispersion relation leads to dephasing and a deterioration of the intensity distribution with propagation distance. Here we consciously exploit the fundamental cause of the beam deterioration—the dispersion relation of the underlying vectorial electromagnetic modes—by their selective excitation using adaptive optics. This allows us to produce output beams of high modal purity, which are well defined in three dimensions. The output beam distribution is even robust against significant bending of the fibre. The utility of this approach is exemplified by the controlled rotational manipulation of live cells in a dual-beam fibre-optical trap integrated into a modular lab-on-chip system.
The diverse physical properties of membranes play a critical role in many membrane associated biological processes. Proteins responsible for membrane transport can be affected by the lateral membrane order and lateral segregation of proteins is often controlled by the preference of certain membrane anchors for membrane phases having a physically ordered state. The dynamic properties of coexisting membrane phases are often studied by investigating their thermal behavior. Optical trapping of gold nanoparticles is a useful tool to generate local phase transitions in membranes. The high local temperatures surrounding an irradiated gold nanoparticle can be used to melt a part of a giant unilamellar lipid vesicle (GUV) which is then imaged using phase sensitive fluorophores embedded within the bilayer. By local melting of GUVs we reveal how a protein-free, one component lipid bilayer can mediate passive transport of fluorescent molecules by localized and transient pore formation. Also, we show how tubular membrane curvatures can be generated by optical pulling from the melted region on the GUV. This will allow us to measure the effect of membrane curvature on the phase transition temperature.
Multiple-beam optical traps facilitate advanced trapping geometries and exciting discoveries. However, the increased manipulation capabilities come at the price of more challenging position and force detection. Due to unrivaled bandwidth and resolution, photodiode based detection is preferred over camera based detection in most single/dual-beam optical traps assays. However, it has not been trivial to implement photodiode based detection for multiple-beam optical traps. Here, we present a simple and efficient method based on spatial filtering for parallel photodiode detection of multiple traps. The technique enables fast and accurate 3D force and distance detection of multiple objects simultaneously manipulated by multiple-beam optical tweezers.
In the study of living soft matter, we often seek to understand the mechanisms underlying the motion of a single molecule, an organelle, or some other tracer. The experimentally observed signature of the tracer is masked by its thermal fluctuations, inherent drift of the system, and instrument noise. In addition, the timing or length scales of the events of interest are often unknown. In the current issue of ACS Nano, Chen et al. present a general method for extracting the underlying dynamics from time series. Here, we provide an easily accessible introduction to the method, put it into perspective with the field, and exemplify how it can be used to answer important out-standing questions within soft matter and living systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.