Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly1 and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops2. Honey bees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high impact pathogens3,4 and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumble bees (Bombus spp.) are in global decline5,6, one cause of which may be pathogen spillover from managed pollinators like honey bees7,8 or commercial colonies of bumble bees9. In our study, a combination of infection experiments with landscape scale field data indicates that honey bee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic Nosema ceranae is linked between honey bees and bumble bees, with honey bees having higher DWV prevalence, and sympatric bumble bees and honey bees sharing DWV strains; Apis is therefore the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates10,11 highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.
SummaryMethods are described for working with Nosema apis and Nosema ceranae in the field and in the laboratory. For fieldwork, different sampling methods are described to determine colony level infections at a given point in time, but also for following the temporal infection dynamics.Suggestions are made for how to standardise field trials for evaluating treatments and disease impact. The laboratory methods described include different means for determining colony level and individual bee infection levels and methods for species determination, including light microscopy, electron microscopy, and molecular methods (PCR). Suggestions are made for how to standardise cage trials, and different inoculation methods for infecting bees are described, including control methods for spore viability. A cell culture system for in vitro rearing of Nosema spp. is described. Finally, how to conduct different types of experiments are described, including infectious dose, dose effects, course of infection and longevity tests. Métodos estándar para la investigación sobre Nosema ResumenSe describen procedimientos para trabajar con Nosema apis y Nosema ceranae en el campo y en el laboratorio. Para el trabajo de campo, se describen diferentes métodos de muestreo para determinar infecciones al nivel de colonia en un momento determinado, y también para el seguimiento de la dinámica temporal de infección. Se hacen sugerencias para la forma de estandarizar los ensayos de campo para evaluar los tratamientos y el impacto de la enfermedad. Los métodos de laboratorio descritos incluyen diferentes formas de determinar los niveles de infección al nivel de colonia y de abeja individual, y los métodos para la determinación de las especies, incluyendo microscopía óptica, microscopía electrónica y métodos moleculares (PCR). Se hacen sugerencias para estandarizar los ensayos con cajas, y se describen diferentes métodos de inoculación para infectar abejas, incluyendo métodos de control para la viabilidad de las esporas. Se describe un sistema de cultivo celular para la cría in vitro de Nosema spp. Finalmente, se describe cómo llevar a cabo diferentes tipos de experimentos, incluyendo la dosis infecciosa, efectos de la dosis, curso de la infección y las pruebas de longevidad.
Summary Declining populations of bee pollinators are a cause of concern, with major repercussions for biodiversity loss and food security. RNA viruses associated with honeybees represent a potential threat to other insect pollinators, but the extent of this threat is poorly understood.This study aims to attain a detailed understanding of the current and ongoing risk of emerging infectious disease (EID) transmission between managed and wild pollinator species across a wide range of RNA viruses.Within a structured large‐scale national survey across 26 independent sites, we quantify the prevalence and pathogen loads of multiple RNA viruses in co‐occurring managed honeybee (Apis mellifera) and wild bumblebee (Bombus spp.) populations. We then construct models that compare virus prevalence between wild and managed pollinators.Multiple RNA viruses associated with honeybees are widespread in sympatric wild bumblebee populations. Virus prevalence in honeybees is a significant predictor of virus prevalence in bumblebees, but we remain cautious in speculating over the principle direction of pathogen transmission. We demonstrate species‐specific differences in prevalence, indicating significant variation in disease susceptibility or tolerance. Pathogen loads within individual bumblebees may be high and in the case of at least one RNA virus, prevalence is higher in wild bumblebees than in managed honeybee populations.Our findings indicate widespread transmission of RNA viruses between managed and wild bee pollinators, pointing to an interconnected network of potential disease pressures within and among pollinator species. In the context of the biodiversity crisis, our study emphasizes the importance of targeting a wide range of pathogens and defining host associations when considering potential drivers of population decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.