IMPORTANCENewborn screening for Angelman syndrome (AS), Prader-Willi syndrome (PWS), and chromosome 15 duplication syndrome (Dup15q) may lead to benefit from early diagnosis and treatment. OBJECTIVE To examine the feasibility of newborn screening for these chromosome 15 imprinting disorders at population scale. DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, the validation data set for the firsttier SNRPN test, called methylation-specific quantitative melt analysis (MS-QMA), included 109 PWS, 48 AS, 9 Dup15q, and 1190 population control newborn blood spots (NBS) and peripheral tissue samples from participants recruited from January 2000 to December 2016. The test data set included NBS samples from 16 579 infants born in 2011. Infants with an NBS identified as positive for PWS, AS, or Dup15q by the first-tier test were referred for droplet digital polymerase chain reaction, real-time polymerase chain reaction, and low-coverage whole-genome sequencing for confirmatory testing. Data analyses were conducted between February 12, 2015, and August 15, 2020. RESULTSIn the validation data set, the median age for the 77 patients with PWS was 3.00 years (IQR, 0.01-44.50 years); for the 46 patients with AS, 2.76 years (IQR, 0.028 to 49.00 years); and for the 9 patients with Dup15q, 4.00 years (IQR, 1.00 to 28.00 years). Thirty-eight patients (51.4%) in the PWS group, 20 patients (45.5%) in the AS group, and 6 patients (66.7%) in the Dup15q group who had sex reported were male. The validation data set showed MS-QMA sensitivity of 99.0% for PWS, 93.8% for AS, and 77.8% for Dup15q; specificity of 100% for PWS, AS, and Dup15q; positive predictive and negative predictive values of 100% for PWS and AS; and a positive predictive value of 87.5% and negative predictive value of 100% for Dup15q. In the test data set of NBS samples from 16 579 infants, 92 had a positive test result using a methylation ratio cut-off of 3 standard deviations from the mean. Of these patients, 2 were confirmed to have PWS; 2, AS; and 1, maternal Dup15q.With the use of more conservative PWS-and AS-specific thresholds for positive calls from the validation data set, 9 positive NBS results were identified by MS-QMA in this cohort. The 2 PWS and 2 AS calls were confirmed by second-tier testing, but the 1 Dup15q case was not confirmed. Together, these results provided prevalence estimates of 1 in 8290 for both AS and PWS and 1 in 16 579 for maternal Dup15q, with positive predictive values for first-tier testing at 67.0% for AS, 33.0% for PWS, and 44.0% for combined detection of chromosome 15 imprinting disorders for the validation data set. CONCLUSIONS AND RELEVANCEThe findings of this diagnostic study suggest that it is feasible to screen for all chromosome 15 imprinting disorders using SNRPN methylation analysis, with 5 individuals identified with these disorders out of 16 579 infants screened.
Fragile X syndrome (FXS) is a leading single-gene cause of intellectual disability (ID) with autism features. This study analysed diagnostic and prognostic utility of the Fragile X-Related Epigenetic Element 2 DNA methylation (FREE2m) assessed by Methylation Specific-Quantitative Melt Analysis and the EpiTYPER system, in retrospectively retrieved newborn blood spots (NBS) and newly created dried blood spots (DBS) from 65 children with FXS (~2–17 years). A further 168 NBS from infants from the general population were used to establish control reference ranges, in both sexes. FREE2m analysis showed sensitivity and specificity approaching 100%. In FXS males, NBS FREE2m strongly correlated with intellectual functioning and autism features, however associations were not as strong for FXS females. Fragile X mental retardation 1 gene (FMR1) mRNA levels in blood were correlated with FREE2m in both NBS and DBS, for both sexes. In females, DNAm was significantly increased at birth with a decrease in childhood. The findings support the use of FREE2m analysis in newborns for screening, diagnostic and prognostic testing in FXS.
Chromosome 15 (C15) imprinting disorders including Prader–Willi (PWS), Angelman (AS) and chromosome 15 duplication (Dup15q) syndromes are severe neurodevelopmental disorders caused by abnormal expression of genes from the 15q11–q13 region, associated with abnormal DNA methylation and/or copy number changes. This study compared changes in mRNA levels of UBE3A and SNORD116 located within the 15q11–q13 region between these disorders and their subtypes and related these to the clinical phenotypes. The study cohort included 58 participants affected with a C15 imprinting disorder (PWS = 27, AS = 21, Dup15q = 10) and 20 typically developing controls. Semi-quantitative analysis of mRNA from peripheral blood mononuclear cells (PBMCs) was performed using reverse transcription droplet digital polymerase chain reaction (PCR) for UBE3A and SNORD116 normalised to a panel of internal control genes determined using the geNorm approach. Participants completed an intellectual/developmental functioning assessment and the Autism Diagnostic Observation Schedule-2nd Edition. The Dup15q group was the only condition with significantly increased UBE3A mRNA levels when compared to the control group (p < 0.001). Both the AS and Dup15q groups also had significantly elevated SNORD116 mRNA levels compared to controls (AS: p < 0.0001; Dup15q: p = 0.002). Both UBE3A and SNORD116 mRNA levels were positively correlated with all developmental functioning scores in the deletion AS group (p < 0.001), and autism features (p < 0.001) in the non-deletion PWS group. The findings suggest presence of novel interactions between expression of UBE3A and SNORD116 in PBMCs and brain specific processes underlying motor and language impairments and autism features in these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.