Logit Dynamics [Blume, Games and Economic Behavior, 1993] are randomized best response dynamics for strategic games: at every time step a player is selected uniformly at random and she chooses a new strategy according to a probability distribution biased toward strategies promising higher payoffs. This process defines an ergodic Markov chain, over the set of strategy profiles of the game, whose unique stationary distribution is the long-term equilibrium concept for the game. However, when the mixing time of the chain is large (e.g., exponential in the number of players), the stationary distribution loses its appeal as equilibrium concept, and the transient phase of the Markov chain becomes important. It can happen that the chain is "metastable", i.e., on a time-scale shorter than the mixing time, it stays close to some probability distribution over the state space, while in a time-scale multiple of the mixing time it jumps from one distribution to another.In this paper we give a quantitative definition of "metastable probability distributions" for a Markov chain and we study the metastability of the logit dynamics for some classes of coordination games. We first consider a pure n-player coordination game that highlights the distinctive features of our metastability notion based on distributions. Then, we study coordination games on the clique without a risk-dominant strategy (which are equivalent to the well-known Glauber dynamics for the Curie-Weiss model) and coordination games on a ring (both with and without risk-dominant strategy).
Game theory studies situations in which strategic players can modify the state of a given system, in the absence of a central authority. Solution concepts, such as Nash equilibrium, have been defined in order to predict the outcome of such situations. In multi-player settings, it has been pointed out that to be realistic, a solution concept should be obtainable via processes that are decentralized and reasonably simple. Accordingly we look at the computation of solution concepts by means of decentralized dynamics. These are algorithms in which players move in turns to decrease their own cost and the hope is that the system reaches an “equilibrium” quickly.\ud \ud We study these dynamics for the class of opinion games, recently introduced by Bindel et al. [FOCS, 2011]. These are games, important in economics and sociology, that model the formation of an opinion in a social network. We study best-response dynamics and show upper and lower bounds on the convergence to Nash equilibria. We also study a noisy version of best-response dynamics, called logit dynamics, and prove a host of results about its convergence rate as the noise in the system varies. To get these results, we use a variety of techniques developed to bound the mixing time of Markov chains, including coupling, spectral characterizations and bottleneck ratio
We study the revenue performance of sequential posted-price mechanisms and some natural extensions for a setting where the valuations of the buyers are drawn from a correlated distribution. Sequential posted-price mechanisms are conceptually simple mechanisms that work by proposing a "take-it-or-leave-it" offer to each buyer. We apply sequential posted-price mechanisms to single-parameter multiunit settings in which each buyer demands only one item and the mechanism can assign the service to at most k of the buyers.For standard sequential posted-price mechanisms, we prove that with the valuation distribution having finite support, no sequential posted-price mechanism can extract a constant fraction of the optimal expected revenue, even with unlimited supply. We extend this result to the case of a continuous valuation distribution when various standard assumptions hold simultaneously (i.e., everywhere-supported, continuous, symmetric, and normalized (conditional) distributions that satisfy regularity, the MHR condition, and affiliation). In fact, it turns out that the best fraction of the optimal revenue that is extractable by a sequential posted-price mechanism is proportional to the ratio of the highest and lowest possible valuation.We prove that a simple generalization of these mechanisms achieves a better revenue performance; namely, if the sequential posted-price mechanism has for each buyer the option of either proposing an offer or asking the buyer for its valuation, then a Ω(1/ max{1, d }) fraction of the optimal revenue can be extracted, where d denotes the degree of dependence of the valuations, ranging from complete independence (d = 0) to arbitrary dependence (d = n − 1).
We study logit dynamics [3] for strategic games. This dynamics works as follows: at every stage of the game a player is selected uniformly at random and she plays according to a noisy best-response where the noise level is tuned by a parameter β. Such a dynamics defines a family of ergodic Markov chains, indexed by β, over the set of strategy profiles. We believe that the stationary distribution of these Markov chains gives a meaningful description of the long-term behavior for systems whose agents are not completely rational.Our aim is twofold: On the one hand, we are interested in evaluating the performance of the game at equilibrium, i.e. the expected social welfare when the strategy profiles are random according to the stationary distribution. On the other hand, we want to estimate how long it takes, for a system starting at an arbitrary profile and running the logit dynamics, to get close to its stationary distribution; i.e., the mixing time of the chain.In this paper we study the stationary expected social welfare for the 3-player CK game [6], for 2-player coordination games, and for two simple n-player games. For all these games, we also give almost tight upper and lower bounds on the mixing time of logit dynamics. Our results show two different behaviors: in some games the mixing time depends exponentially on β, while for other games it can be upper bounded by a function independent of β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.