Making language models bigger does not inherently make them better at following a user's intent. For example, large language models can generate outputs that are untruthful, toxic, or simply not helpful to the user. In other words, these models are not aligned with their users. In this paper, we show an avenue for aligning language models with user intent on a wide range of tasks by fine-tuning with human feedback. Starting with a set of labeler-written prompts and prompts submitted through the OpenAI API, we collect a dataset of labeler demonstrations of the desired model behavior, which we use to fine-tune GPT-3 using supervised learning. We then collect a dataset of rankings of model outputs, which we use to further fine-tune this supervised model using reinforcement learning from human feedback. We call the resulting models InstructGPT. In human evaluations on our prompt distribution, outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters. Moreover, InstructGPT models show improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets. Even though InstructGPT still makes simple mistakes, our results show that fine-tuning with human feedback is a promising direction for aligning language models with human intent.
The electronic state spectroscopy of acetone (CH3)2CO has been investigated using high-resolution VUV photoabsorption spectroscopy in the energy range 3.7-10.8 eV. New vibronic structure has been observed, notably in the low energy absorption band assigned to the 1(1)A(1) --> 1(1)A2 (ny --> pi*) transition. The local absorption maximum at 7.85 eV has been tentatively attributed to the 4(1)A1 (pi --> pi*) transition. Six Rydberg series converging to the lowest ionisation energy (9.708 eV) have been assigned as well as a newly-resolved ns Rydberg series converging to the first ionic excited state (12.590 eV). Rydberg orbitals of each series have been classified according to the magnitude of the quantum defect (delta) and are extended to higher quantum numbers than in the previous analyses.
Image segmentation has become an important tool in orthopedic and biomechanical research. However, it greatly remains a time-consuming and laborious task. In this manuscript, we propose a fully automatic model-based segmentation pipeline for the full lower limb in computed tomography (CT) images. The method relies on prior shape model fitting, followed by a gradientdefined free from deformation. The technique allows for the generation of anatomically corresponding surface meshes, which can subsequently be applied in anatomical and mechanical simulation studies. Starting from an initial, small (n ≤ 10) sample of manual segmentations, the model is continuously updated and refined with newly segmented training samples. Validation of the segmentation pipeline was performed by comparing the automatic segmentations against corresponding manual segmentations. Convergence of the segmentation pipeline was obtained in 250 cases and failed in three samples. The average distance error ranged from 0.53 to 0.76 mm and maximal error ranged from 2.0 to 7.8 mm for the 7 different osteological structures that were investigated. The accuracy of the shape model-based segmentation gradually increased as the number of training shapes in the updated population also increased. When optimized with the free form deformation, however, average segmentation accuracy rapidly plateaued from already as little as 20 training samples on. The maximum segmentation error plateaued from 100 training samples on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.