Scoring functions are essential for modern in silico drug discovery. However, the accurate prediction of binding affinity by scoring functions remains a challenging task. The performance of scoring functions is very heterogeneous across different target classes. Scoring functions based on precise physics-based descriptors better representing protein–ligand recognition process are strongly needed. We developed a set of new empirical scoring functions, named DockTScore, by explicitly accounting for physics-based terms combined with machine learning. Target-specific scoring functions were developed for two important drug targets, proteases and protein–protein interactions, representing an original class of molecules for drug discovery. Multiple linear regression (MLR), support vector machine and random forest algorithms were employed to derive general and target-specific scoring functions involving optimized MMFF94S force-field terms, solvation and lipophilic interactions terms, and an improved term accounting for ligand torsional entropy contribution to ligand binding. DockTScore scoring functions demonstrated to be competitive with the current best-evaluated scoring functions in terms of binding energy prediction and ranking on four DUD-E datasets and will be useful for in silico drug design for diverse proteins as well as for specific targets such as proteases and protein–protein interactions. Currently, the MLR DockTScore is available at www.dockthor.lncc.br.
The treatment for locally advanced rectal carcinomas (LARC) is based on neoadjuvant chemoradiotherapy (nCRT) and surgery, which results in pathological complete response (pCR) in up to 30% of patients. Since epigenetic changes may influence response to therapy, we aimed to identify DNA methylation markers predictive of pCR in LARC patients treated with nCRT. We used high-throughput DNA methylation analysis of 32 treatment-naïve LARC biopsies and five normal rectal tissues to explore the predictive value of differentially methylated (DM) CpGs. External validation was carried out with The Cancer Genome Atlas-Rectal Adenocarcinoma (TCGA-READ 99 cases). A classifier based on three-CpGs DM (linked to OBSL1, GPR1, and INSIG1 genes) was able to discriminate pCR from incomplete responders with high sensitivity and specificity. The methylation levels of the selected CpGs confirmed the predictive value of our classifier in 77 LARCs evaluated by bisulfite pyrosequencing. Evaluation of external datasets (TCGA-READ, GSE81006, GSE75546, and GSE39958) reproduced our results. As the three CpGs were mapped near to regulatory elements, we performed an integrative analysis in regions associated with predicted cis-regulatory elements. A positive and inverse correlation between DNA methylation and gene expression was found in two CpGs. We propose a novel predictive tool based on three CpGs potentially useful for pretreatment screening of LARC patients and guide the selection of treatment modality.
The studied environmental factors were not correlated with patient quality of life. However, the analysis of patient households and symptoms indicates the environment played a role in the onset of allergy events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.