Tidal inlets connect the ocean to inner water bodies and are present worldwide. Shallow inlets display fast morphological changes, due to complex interactions between tides, waves, and shallow depths. Their closure is commonly observed under storm waves, but the underlying processes remain only partly understood. Here, we present new field evidence that infragravity waves contribute to the closure of shallow inlets. The analysis of new field data collected at a shallow inlet under storm waves reveals that infragravity waves up to 0.4 m high can propagate inside the lagoon during flood but are blocked by opposing currents during ebb. At the passage of an infragravity wave crest, currents peak over 2.5 m/s and increase instantaneous sand fluxes by 2 orders of magnitude. Large accumulations of sand at the lagoon entrance damp tidal propagation until full inlet closure. This mechanism provides a new explanation for the closure of shallow inlets observed worldwide.
The breaking wave height is a crucial parameter for coastal studies but direct measurements constitute a difficult task due to logistical and technical constraints. This paper presents two new practical methods for estimating the breaking wave height from digital images collected by shore-based video monitoring systems. Both methods use time-exposure (Timex) images and exploit the cross-shore length ( L H s ) of the typical time-averaged signature of breaking wave foam. The first method ( H s b , v ) combines L H s and a series of video-derived parameters with the beach profile elevation to obtain the breaking wave height through an empirical formulation. The second method ( H s b , v 24 ) is based on the empirical finding that L H s can be associated with the local water depth at breaking, thus it can be used to estimate the breaking wave height without the requirement of local bathymetry. Both methods were applied and verified against field data collected at the Portuguese Atlantic coast over two days using video acquired by an online-streaming surfcam. Furthermore, H s b , v 24 was applied on coastal images acquired at four additional field sites during distinct hydrodynamic conditions, and the results were compared to a series of different wave sources. Achievements suggest that H s b , v method represents a good alternative to numerical hydrodynamic modeling when local bathymetry is available. In fact, the differences against modeled breaking wave height, ranging from 1 to 3 m at the case study, returned a root-mean-square-error of 0.2 m. The H s b , v 24 method, when applied on video data collected at five sites, assessed a normalized root-mean-square-error of 18% on average, for dataset of about 900 records and breaking wave height ranging between 0.1 and 3.8 m. These differences demonstrate the potential of H s b , v 24 in estimating breaking wave height merely using Timex images, with the main advantage of not requiring the beach profile. Both methods can be easily implemented as cost-effective tools for hydrodynamic applications in the operational coastal video systems worldwide. In addition, the methods have the potential to be coupled to the numerous other Timex applications for morphodynamic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.