Water erosion is one of the most important soil degradation processes and it can be intensified by land use and vegetal covering changes. Thus, water erosion modeling studies associated to multi temporal analyses of land use are effective in assessing how changes in land cover affects sediment yield. Therefore, considering the modifications in the land use from 1986 to 2011, the aim of this study ranged to estimate water erosion rates and compare them to the soil loss tolerance (SLT) limit in the Latosols (Oxisols) at Ribeirão Caçús sub-basin, in the South of Minas Gerais State, Southeast Brazil, by means of the Revised Universal Soil Loss Equation (RUSLE) in association with the geographic information system (GIS), and geostatistical techniques. So, for each year mapped, soil loss averages were compared by t test at 5% significance to assess the soil degradation stage. The results indicated that, in the period, the soil loss average rate was from 2.4 to 2.6 Mg ha -1 year -1 and the areas with soil loss above the limit of SLT were around 8.0%. The t test demonstrated there was no considerable difference among the soil loss averages (p = 0.18). In consequence, the area of degraded soils did not increase. Thus, the RUSLE model in GIS is a simple and useful tool to estimate the soil loss and help define soil conservation and recovery measures.
This study assesses the performance of the new Global Precipitation Measurement (GPM)-based satellite precipitation estimates (SPEs) datasets in the Brazilian Central Plateau and compares it with the previous Tropical Rainfall Measurement Mission (TRMM)-era datasets. To do so, the Integrated Multi-satellitE Retrievals for GPM (IMERG)-v5 and the Global Satellite Mapping of Precipitation (GSMaP)-v7 were evaluated at their original 0.1° spatial resolution and for a 0.25° grid for comparison with TRMM Multi-satellite Precipitation Analysis (TMPA). The assessment was made on an annual, monthly, and daily basis for both wet and dry seasons. Overall, IMERG presents the best annual and monthly results. In both time steps, IMERG’s precipitation estimations present bias with lower magnitudes and smaller root-mean-square error. However, GSMaP performs slightly better for the daily time step based on categorical and quantitative statistical analysis. Both IMERG and GSMaP estimates are seasonally influenced, with the highest difficulty in estimating precipitation occurring during the dry season. Additionally, the study indicates that GPM-based SPEs products are capable of continuing TRMM-based precipitation monitoring with similar or even better accuracy than obtained previously with the widely used TMPA product.
INTRODUÇÃOO uso de modelos para a avaliação e mitigação de impactos ambientais é imprescindível frente ao futuro crescimento da população e da demanda por commodities da agropecuária (UNFPA 2012), que deverão acarretar ainda maior pressão sobre os solos. Além disso, no Brasil, 79,6 % da energia elétrica ABSTRACT RESUMO
The recent and continuous development of unmanned aerial vehicles (UAV) and small cameras with different spectral resolutions and imaging systems promotes new remote sensing platforms that can supply ultra-high spatial and temporal resolution, filling the gap between ground-based surveys and orbital sensors. This work aimed to monitor siltation in two large rural and urban reservoirs by recording water color variations within a savanna biome in the central region of Brazil using a low cost and very light unmanned platform. Airborne surveys were conducted using a Parrot Sequoia camera (~0.15 kg) onboard a DJI Phantom 4 UAV (~1.4 kg) during dry and rainy seasons over inlet areas of both reservoirs. Field measurements of total suspended solids (TSS) and water clarity were made jointly with the airborne survey campaigns. Field hyperspectral radiometry data were also collected during two field surveys. Bio-optical models for TSS were tested for all spectral bands of the Sequoia camera. The near-infrared single band was found to perform the best (R2: 0.94; RMSE: 7.8 mg L−1) for a 0–180 mg L−1 TSS range and was used to produce time series of TSS concentration maps of the study areas. This flexible platform enabled monitoring of the increase of TSS concentration at a ~13 cm spatial resolution in urban and rural drainages in the rainy season. Aerial surveys allowed us to map TSS load fluctuations in a 1 week period during which no satellite images were available due to continuous cloud coverage in the rainy season. This work demonstrates that a low-cost configuration allows dense TSS monitoring at the inlet areas of reservoirs and thus enables mapping of the sources of sediment inputs, supporting the definition of mitigation plans to limit the siltation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.