In this work, the design and development of an alternative three-dimensional array is presented. This arrangement aims to improve Simultaneously Wireless Information and Power Transfer (SWIPT) systems and to provide advantages when integrated into a Wireless Sensor Network (WSN) architecture. The conceived 3D antenna array consists of eight antenna elements operating at 5.65 GHz that are attached in a 3D printed heptagonal prism. With this structure, it is intended to achieve as close as possible to an omnidirectional radiation pattern with considerable gain, avoiding power losses. The experimental measurements carried out are in line with the performed electromagnetic simulations and validate the array operation. A full azimuth coverage was ensured with an average realized gain of 6.7 dBi. For some azimuth directions, this gain can reach approximately 8.35 dBi. This array proves to be a reliable solution to fed multiple low-power sensors that are placed over the 360 azimuth angles.
The main goal of this paper is to present a three-dimensional (3D) antenna array to improve the performance of wireless power transmission (WPT) systems, as well as its characterization with over-the-air (OTA) multi-sine techniques. The 3D antenna consists of 15 antenna elements attached to an alternative 3D structure, allowing energy to be transmitted to all azimuth directions at different elevation angles without moving. The OTA multi-sine characterization technique was first utilized to identify issues in antenna arrays. However, in this work, the technique is used to identify which elements of the 3D antenna should operate to transmit the energy in a specific direction. Besides, the 3D antenna design description and its characterization are performed to authenticate its operation. Since 3D antennas are an advantage in WPT applications, the antenna is evaluated in a real WPT scenario to power an RF–DC converter, and experimental results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.