Ebola and cholera treatment centres (ETC and CTC) generate considerable quantities of excreta that can further the transmission of disease amongst patients and health workers. Therefore, approaches for the safe handling, containment and removal of excreta within such settings are needed to minimise the likelihood of onward disease transmission. This study compared the performance and suitability of three chlorine-based approaches (0.5% HTH, NaDCC and NaOCl (domestic bleach)) and three lime-based approaches (10%, 20% and 30% Ca(OH)2). The experiments followed recent recommendations for Ebola Treatment Centres. Three excreta matrices containing either raw municipal wastewater, or raw municipal wastewater plus 10% or 20% (w/v) added faecal sludge, were treated in 14 litre buckets at a ratio of 1:10 (chlorine solutions or lime suspensions: excreta matrix). The effects of mixing versus non-mixing and increasing contact time (10 and 30 mins) were also investigated. Bacterial (faecal coliforms (FC) and intestinal enterococci (IE)) and viral (somatic coliphages (SOMPH), F+specific phages (F+PH) and Bacteroides fragilis phages (GB-124PH)) indicators were used to determine the efficacy of each approach. Lime-based approaches provided greater treatment efficacy than chlorine-based approaches, with lime (30% w/v) demonstrating the greatest efficacy (log reductions values, FC = 4.75, IE = 4.16, SOMPH = 2.85, F+PH = 5.13 and GB124PH = 5.41). There was no statistical difference in efficacy between any of the chlorine-based approaches, and the highest log reduction values were: FC = 2.90, IE = 2.36, SOMPH = 3.01, F+PH = 2.36 and GB124PH = 0.74. No statistical difference was observed with respect to contact time for any of the approaches, and no statistical differences were observed with respect to mixing for the chlorine-based approaches. However, statistically significant increases in the efficacy of some lime-based approaches were observed following mixing. These findings provide evidence and practical advice to inform safe handling and containment of excreta and ensure more effective health protection in future emergency settings.
Rainwater harvesting reliability, the proportion of days annually when rainwater demand is fully met, is challenging to estimate from cross-sectional household surveys that underpin international monitoring. This study investigated the use of a modelling approach that integrates household surveys with gridded precipitation data to evaluate rainwater harvesting reliability, using two local-scale household surveys in rural Siaya County, Kenya as an illustrative case study. We interviewed 234 households, administering a standard questionnaire that also identified the source of household stored drinking water. Logistic mixed effects models estimated stored rainwater availability from household and climatological variables, with random effects accounting for unobserved heterogeneity. Household rainwater availability was significantly associated with seasonality, storage capacity, and access to alternative improved water sources. Most households (95.1%) that consumed rainwater faced insufficient supply of rainwater available for potable needs throughout the year, with intermittencies during the short rains for most households with alternative improved sources. Although not significant, stored rainwater lasts longer for households whose only improved water source was rainwater (301.8 ± 40.2 days) compared to those having multiple improved sources (144.4 ± 63.7 days). Such modelling analysis could enable rainwater harvesting reliability estimation, and thereby national/international monitoring and targeted follow-up fieldwork to support rainwater harvesting.
Water safety planning is an approach to ensure safe drinking-water access through comprehensive risk assessment and water supply management from catchment to consumer. However, its uptake remains low in rural areas. Participatory mapping, the process of map creation for resource management by local communities, has yet to be used for rural water safety planning. In this mixed methods study, to evaluate the validity of participatory mapping outputs for rural water safety planning and assess community understanding of water safety, 140 community members in Siaya County, Kenya, attended ten village-level participatory mapping sessions. They mapped drinking-water sources, ranked their safety and mapped potential contamination hazards. Findings were triangulated against a questionnaire survey of 234 households, conducted in parallel. In contrast to source type ranking for international monitoring, workshop participants ranked rainwater’s safety above piped water and identified source types such as broken pipes not explicitly recorded in water source typologies often used for formal monitoring. Participatory mapping also highlighted the overlap between livestock grazing areas and household water sources. These findings were corroborated by the household survey and subsequent participatory meetings. However, comparison with household survey data suggested participatory mapping outputs omitted some water sources and landscape-scale contamination hazards, such as open defecation areas or flood-prone areas. In follow-up visits, participant groups ranked remediation of rainwater harvesting systems as the most acceptable intervention to address hazards. We conclude that participatory mapping can complement other established approaches to rural water safety planning by capturing informally managed source use and facilitating community engagement.
Containment, safe handling and disinfection of human excreta in cholera treatment centers (CTC) are key to preventing the onward spread of the disease. This study compared the efficacy of three chlorine-based approaches at concentrations of 0.5%, 1%, and 2% and one hydrated lime-based (Ca(OH)2 at 30% w:v) approach. Experiments followed existing Médecins Sans Frontières (MSF) cholera guidelines. Three simulated human excreta matrices consisting of either raw municipal wastewater (4.5 liters), or raw municipal wastewater plus 1%, or 20% faecal sludge (w:v), were treated in 14 liter Oxfam® buckets containing 125 mL of chlorine solution or hydrated lime suspension. Bacterial indicators (faecal coliforms (FC) and intestinal enterococci (IE)) and viral indicator (somatic coliphages (SOMPH)) were used to determine treatment efficacy following contact times of 10, 30 and 60min. Results showed that efficacy improved as chlorine concentrations increased. No statistical differences were observed with respect to the various contact times. Overall median log removal for 0.5% chlorine were: FC (1.66), IE (1.41); SOMPH (1.28); for 1% chlorine: FC (1.98), IE (1.82); SOMPH (1.79); and for 2% chlorine: FC (2.88), IE (2.60), SOMPH (2.38). Hydrated lime (30%) provided the greatest overall log removal for bacterial indicators (FC (3.93) and IE (3.50), but not for the viral indicator, SOMPH (1.67)). These findings suggest that the use of 30% hydrated lime suspensions or 2% chlorine solutions may offer a simple public health protection measure for the containment, safe handling, and disinfection of human excreta during humanitarian emergencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.