The ability to photochemically activate a drug, both when and where needed, requires optimisation of the difference in biological activity between each isomeric state. As a step to this goal, we report small molecule and peptide‐based inhibitors of the same protease – trypsin – to better understand how photoswitchable drugs interact with their biological target. The best peptidic inhibitor displayed a >5‐fold difference in inhibitory activity between isomeric states, whereas the best small molecule inhibitor only showed a 3.4‐fold difference. Docking and molecular modelling suggests this result is due to a large change in 3D structure in the key binding residues of the peptidic inhibitor upon isomerisation, which is not observed for the small molecule inhibitor. Hence, we demonstrate that significant structural changes in critical binding motifs upon irradiation are essential for maximising the difference in biological activity between isomeric states. This is an important consideration in the design of future photoswitchable drugs for clinical applications.
The antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) is a desirable therapeutic target for a broad range of pathologies, including chronic diseases of the lung and liver, and autoimmune, neurodegenerative, and cardiovascular disorders. However, current Nrf2 activators are limited by unwanted effects due to non-specificity, and systemic distribution and action. Here we report that a 1,2-dicarbonyl moiety masks the electrophilic reactivity of the Nrf2 activator monomethyl fumarate (MMF), otherwise responsible for its non-specific effects. The 1,2-dicarbonyl compound is highly susceptible to Baeyer-Villiger oxidation, with generation of MMF specifically on exposure to pathological levels of hydrogen peroxide or peroxynitrite. Oral treatment with the MMF generating 1,2-dicarbonyl compound reversed chronic neuropathic and osteoarthritis pain in mice, and selectively activated Nrf2 at sites of oxidative stress. This 1,2-dicarbonyl platform may be used to treat additional disorders of oxidative stress, and to selectively target other therapeutics to sites of redox imbalance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.