Purpose:The early detection and diagnosis of pancreatic cancer remains a major clinical challenge in which imaging procedures have a central role. The purpose of this study was to evaluate a pretargeting method with a bispecific PAM4 (bsPAM4; anti-MUC1) antibody for radioimmunoscintigraphy of experimental human pancreatic cancer.Experimental Design: A bispecific F(ab) 2 antibody was generated from chimeric PAM4 Fab and murine 734 (antiindium-diethylenetriaminepentaacetic acid) Fab fragments and then used in conjunction with 2 peptide haptens ( 111 In-IMP-156 and 99m Tc-IMP-192). Biodistribution studies and radioimmunoscintigraphic imaging properties of the radiolabeled bsPAM4, and pretargeted, radiolabeled peptides were examined in the CaPan1 human pancreatic tumor grown as s.c. xenografts in athymic nude mice. Tumor uptake and tumor:nontumor ratios were compared with a nontargeting irrelevant anti-CD20, bispecific rituximab, radiolabeled peptides alone, and with directly labeled PAM4.Results Conclusions: These studies demonstrate the feasibility of using the pretargeted, bispecific antibody technology for nuclear imaging of pancreatic cancer. The advantage of pretargeted bsPAM4 antibody as an imaging platform is the high specificity for pancreatic cancer as compared with the physicochemical parameters identified by current imaging technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.