Plant acclimation to low temperatures occurs through system-wide mechanisms that include proteome shifts, some of which occur at the level of protein synthesis. All proteins are synthesised by ribosomes. Rather than being monolithic, transcript-to-protein translation machines, ribosomes can be selective and cause effective proteome shifts required for successful temperature acclimation. Here, we use apical root meristems of germinating seedlings of the monocotyledonous plant barley as a model to study changes in protein abundance and synthesis rates during cold acclimation. We measure metabolic and physiological parameters that allow us to compare protein synthesis rates in different physiological states, e.g., in cold acclimation compared to the optimal temperature state. We show that ribosomal proteins are independently synthesised and assembled into ribosomal complexes in root proliferative tissue, and assess how the ribo-proteome shifts during cold may be associated with changes in synthesis and accumulation of macromolecular complexes. We demonstrate that translation initiation is the limiting step during cold acclimation and based on our data propose a model of a ribosomal code that depends on a reconfigured ribosome population, where as a mode of cold acclimation, specific ribosomal protein compositions may confer selective association capabilities between 60S subunits and 48S initiation complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.