Abstract. Software security is a matter of major concern for software development enterprises that wish to deliver highly secure software products to their customers. Static analysis is considered one of the most effective mechanisms for adding security to software products. The multitude of static analysis tools that are available provide a large number of raw results that may contain security-relevant information, which may be useful for the production of secure software. Several mechanisms that can facilitate the production of both secure and reliable software applications have been proposed over the years. In this paper, two such mechanisms, particularly the vulnerability prediction models (VPMs) and the optimum checkpoint recommendation (OCR) mechanisms, are theoretically examined, while their potential improvement by using static analysis is also investigated. In particular, we review the most significant contributions regarding these mechanisms, identify their most important open issues, and propose directions for future research, emphasizing on the potential adoption of static analysis for addressing the identified open issues. Hence, this paper can act as a reference for researchers that wish to contribute in these subfields, in order to gain solid understanding of the existing solutions and their open issues that require further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.