-Transitions between tasks arise in many different scheduling problems. Sometimes transitions are undesired because they incur costs; sometimes they are undesired because they require setup time, and sometimes both. In one way or the other, frequently, transitions need to be identified and penalized in order for their frequency to be minimized. The present work is concerned with the study of alternative optimization formulations to address transitions with the blending and distribution scheduling of oil derivatives. Our study starts by revisiting a model proposed in the literature that was built considering a very short time horizon (24 h). Next, improvements concerning the transition constraints are evaluated and a new approach is proposed with the purpose of extending model applicability to cases where longer time horizons are of interest. The new proposed mechanism of evaluating transitions relies on aggregating the detailed discrete time scale (hours) to a higher and less detailed level (days). Transitions are then evaluated on the lower level of aggregation with the benefit of reducing the number of required constraints. It must also be emphasized that the proposed model is built on the basis of a set of heuristics that have direct impact on solution and solution time. Results attained for a four-day time horizon demonstrate cost savings on the order of 32% when compared with four sequenced schedules of a one-day time horizon each. Savings are mainly obtained as a consequence of the reduction of the predicted number of transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.