Dehydration melting in subduction zones often produces cold plumes, initiated by Rayleigh‐Taylor instabilities in the buoyant partially molten zones lying above the dipping subducting slabs. We use scaled laboratory experiments to demonstrate how the slab dip (α) can control the evolution of such plumes. For α > 0°, Rayleigh‐Taylor instabilities evolve as two orthogonal waves, one trench perpendicular with wavelength λL and the other one trench parallel with wavelength λT (λT > λL). We show that two competing processes, (1) λL‐controlled updip advection of partially molten materials and (2) λT/λL interference, determine the modes of plume growth. The λT/λL interference gives rise to an areal distribution of plumes (Mode 1), whereas advection leads to a linear distribution of plumes (Mode 2) at the upper fringe of the partially molten layer. The λT wave instabilities do not grow when α exceeds a threshold value (α* = 30°). For α > α*, λL‐driven advection takes the control to produce exclusively Mode 2 plumes. We performed a series of 2‐D and 3‐D computational fluid dynamics simulations to test the criticality of slab dip in switching the Mode 1 to Mode 2 transition at α*. We discuss the effects of viscosity ratio (R) and the density contrast (Δρ) between the source layers and ambient mantle, source layer thickness (Ts), and slab velocity (Us) on the development of cold plumes. Finally, we discuss the areal versus linear distributions of volcanoes from natural subduction zones as possible examples of Mode 1 versus Mode 2 plume products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.