Transglutaminase 2 (TG2) is a ubiquitous multifunctional enzyme whose expression has been found to be altered in numerous studies of apoptosis and cell survival; its activity has been found to be increased in many types of cancer, where it is often over-expressed. Cisplatin has long been used as an effective therapeutic drug to treat numerous cancers. Although its activity is based on cross-linking of DNA, cisplatin may also operate via other mechanisms that involve modification and alteration in the activity of protein and RNA modulators of the cell cycle and apoptotic processes; these mechanisms are less well characterised. In this study, we investigated the effects of cisplatin-induced apoptosis on TG2 expression and activity in the human hepatocarcinoma (HepG2) cell line. Through a combination of Western blotting, enzymatic activity assays, flow cytometry and fluorescence microscopy we provide evidence that TG2 is inhibited during initiation of apoptosis by cisplatin, an observation that was reversed by increasing the expression of TG2, by treating cells with retinoic acid. We also report, for the first time, that cisplatin can directly inhibit transglutaminase activity in vitro. Collectively, these studies increase our understanding of the mechanism(s) of action of cisplatin, as cisplatin-mediated reduction in TG2 activity appears to act as an early activator of apoptosis during chemotherapeutic treatment of hepatocarcinoma cells. This observation suggests an explanation as to how increased levels of TG2 activity in cancer cells could contribute to chemotherapeutic resistance to cisplatin, and so has implications for novel approaches to cisplatin therapy.
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with complex carcinogenesis. Although there has been significant progress in the treatment of HCC over the past decades, drug resistance to chemotherapy remains a major obstacle in its successful management. In this study we were able to reduce chemoresistance in cisplatin-resistant HepG2 cells by either silencing the expression of transglutaminase type 2 (TG2) using siRNA or by pre-treatment of cells with the TG2 enzyme inhibitor cystamine. Further analysis revealed that, whereas the full-length TG2 isoform (TG2-L) was almost completely cytoplasmic in its distribution, the majority of the short TG2 isoform (TG2-S) was membrane-associated in both parental and chemoresistant HepG2 cells. Following induction of cisplatin toxicity in non-chemoresistant parental cells, TG2-S together with cisplatin quickly relocated to the cytosolic fraction. Conversely, no cytosolic relocalisation of TG2-S or nuclear accumulation cisplatin was observed following identical treatment of chemoresistant cells, where TG2-S remained predominantly membrane-associated. This suggests that deficient subcellular relocalisation of TG2-S from membranous structures into the cytoplasm may limit the apoptic response to cisplatin toxicity in chemoresistant cells. Structural analysis of TG2 revealed the presence of binding motifs for interaction of TG-S with the membrane scaffold protein LC3/LC3 homologue that could contribute to a novel mechanism of chemotherapeutic resistance in HepG2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.