Staphylococcus aureus is a Gram-positive bacterium that causes a variety of diseases, including bovine mastitis, which has severe economic consequences. Standard antibiotic treatment results in selection of resistant strains, leading to need for an alternative treatment such as bacteriophage therapy. Present study describes isolation and characterization of a staphylococcal phage from sewage samples. S. aureus isolates obtained from microbial type culture collection (MTCC), Chandigarh, India, were used to screen staphylococcal phages. A phage designated as ΦMSP was isolated from sewage samples by soft agar overlay method. It produced clear plaques on tryptone soya agar overlaid with S. aureus. Transmission electron microscopy revealed that the phage had an icosahedral symmetry. It had 5 major proteins and possessed a peptidoglycan hydrolase corresponding to 70 kDa. ΦMSP infection induced 26 proteins to be uniquely expressed in S. aureus. This phage can be proposed as a candidate phage to treat staphylococcal infections.
Canine distemper (CD), caused by canine distemper virus (CDV) is a highly contagious disease that infects a variety of carnivores. Sequence analysis of CDVs from different geographical areas has shown a lot of variation in the genome of the virus especially in haemagglutinin gene which might be one of the causes of vaccine failure. In this study, we isolated the virus (place: Ludhiana, Punjab; year: 2014) and further cloned, sequenced and analyzed partial haemagglutinin (H) gene and full length genes for fusion protein (F), phosphoprotein (P) and matrix protein (M) from an Indian wild-type CDV. Higher sequence homology was observed with the strains from Switzerland, Hungary, Germany; and lower with the vaccine strains like Ondersteport, CDV3, Convac for all the genes. The multiple sequence alignment showed more variation in partial H (45 nucleotide and 5 amino acid substitutions) and complete F (79 nucleotide and 30 amino acid substitutions) than in complete P (44 nucleotide and 22 amino acid substitutions) and complete M (22 nucleotide and 4 amino acid substitutions) gene/protein. Predicted potential N-linked glycosylation sites in H, F, M and P proteins were similar to the previously known wild-type CDVs but different from the vaccine strains. The Indian CDV formed a distinct clade in the phylogenetic tree clearly separated from the previously known wild-type and vaccine strains.
Hepatitis E virus (HEV) has two discrete epidemiological patterns: waterborne epidemics in developing countries only, caused by HEV genotype I, and sporadic zoonotic outbreaks in developing and developed countries caused by genotypes III and IV. This study was designed to investigate seroprevalence, molecular detection and the characterization of HEV by nested RT-PCR in swine as well as the occupational risk to exposed human population in Punjab state of north-western India. The occupational risk-exposed group comprised of swine farmers (organized - mixed feed feeders and unorganized - swill feeders), slaughterhouse workers, sewage workers and veterinary internes. During the study period, blood and faecal samples were collected from 320 swine and 360 humans with both high and low occupational exposure risks. The overall seroprevalence of swine HEV was 65.00%, with a significantly higher seropositivity in growing pigs (2-8 months of age). The prevalence of HEV RNA in swine faecal samples by nRT-PCR was 8.75% with a significantly higher detection in swill-fed pigs. With humans in the high occupational exposure risk population, significantly higher anti-HEV IgG seropositivity was observed (60.48%) as compared to control population (10.71%). Strong evidence of association between human anti-HEV IgG seropositivity and certain occupational exposure risk groups was observed (p < 0.05). This indicates that unorganized swine farmers, slaughterhouse workers and sewage workers have higher odds of HEV infection in this study region. Percentage of nucleotide similarity between swine and human HEV isolates was less than that found in countries with zoonotic HEV outbreaks. Molecular characterization revealed the circulation of G IV and G I genotypes among swine and human population in Punjab state, respectively.
Celiac Disease (CD) is a multifactorial, autoimmune enteropathy activated by cereal proteins in genetically predisposed individuals carrying HLA DQ2/8 genes. A heterogenous gene combination of the cereal prolamins is documented in different wheat genotypes, which is suggestive of their variable immunogenic potential. In the current study, four wheat varieties (C591, C273, 9D, and K78) identified via in silico analysis were analyzed for immunogenicity by measuring T-cell proliferation rate and levels of inflammatory cytokines (Interferon-γ and Tumor Necrosis Factor-α). Peripheral Blood Mononuclear Cells and biopsy derived T-cell lines isolated from four CD patients in complete remission and two controls were stimulated and cultured in the presence of tissue transglutaminase activated pepsin-trypsin (PT) digest of total gliadin extract from test varieties. The immunogenicity was compared with PBW 621, one of the widely cultivated wheat varieties. Phytohaemagglutinin-p was taken as positive control, along with unstimulated cells as negative control. Rate of cell proliferation (0.318, 0.482; 0.369, 0.337), concentration of IFN- γ (107.4, 99.2; 117.9, 99.7 pg/ml), and TNF- α (453.8, 514.2; 463.8, 514.2 pg/ml) was minimum in cultures supplemented with wheat antigen from C273, when compared with other test varieties and unstimulated cells. Significant difference in toxicity levels among different wheat genotypes to stimulate celiac mucosal T-cells and PBMC's was observed; where C273 manifested least immunogenic response amongst the test varieties analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.