Background-Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1␣ (also called ␣-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. Methods and Results-In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1. By developing a TPM1-specific antibody, we found that the TPM1 protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1 in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1. Incorporation of increased levels of TPM1 protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1 compared with TPM1␣. Conclusions-This functional analysis of TPM1 provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients. (Circulation. 2010;121:410-418.)Key Words: cardiomyopathy Ⅲ contractility Ⅲ heart failure Ⅲ myocardial contraction T he heart adapts to different challenges presented by an array of mechanical, hormonal, and nutritional signals in the process of maintaining its circulatory function. Isoform switching of sarcomeric proteins is 1 mode the heart uses to adapt to those challenges, along with alterations in the relative abundance and phosphorylation status of contractile and regulatory proteins. 1 These changes in isoform expression and phosphorylation status also play an essential role during cardiac development and in response to cardiac hypertrophy and heart failure (HF). Although sarcomeric protein isoforms are subject to developmental regulation, cardiomyopathy and HF primarily elicit changes in thick filament protein isoforms. 2 The only thin filament protein to change isoform expression in the failing human heart is troponin T. 3,4 Furthermore, altered phosphorylation of troponin I, myosin binding protein C, and other sarcomeric proteins has dramatic effects on cardiac function in the failing human myocardium. 5 Editorial see p 351 Clinical Perspective on p 418To understand the specific role of another thin filament protein, tropomyosin (TM), in the normal and the pathological heart, it is essential to define the TM isoform expression profile. Tropomyosins comprise a family of actin-binding proteins encoded by 4 different genes (TPM1, TPM2, TPM3, and TPM4). Each gene uses alternative splicing, alternative promoters, and differential processing to encode multiple striated muscle, smooth muscle, and cytoskeletal transcripts. For example, the TPM1...
In this chapter, we present the current knowledge on de novo assembly, growth, and dynamics of striated myofibrils, the functional architectural elements developed in skeletal and cardiac muscle. The data were obtained in studies of myofibrils formed in cultures of mouse skeletal and quail myotubes, in the somites of living zebrafish embryos, and in mouse neonatal and quail embryonic cardiac cells. The comparative view obtained revealed that the assembly of striated myofibrils is a three-step process progressing from premyofibrils to nascent myofibrils to mature myofibrils. This process is specified by the addition of new structural proteins, the arrangement of myofibrillar components like actin and myosin filaments with their companions into so-called sarcomeres, and in their precise alignment. Accompanying the formation of mature myofibrils is a decrease in the dynamic behavior of the assembling proteins. Proteins are most dynamic in the premyofibrils during the early phase and least dynamic in mature myofibrils in the final stage of myofibrillogenesis. This is probably due to increased interactions between proteins during the maturation process. The dynamic properties of myofibrillar proteins provide a mechanism for the exchange of older proteins or a change in isoforms to take place without disassembling the structural integrity needed for myofibril function. An important aspect of myofibril assembly is the role of actin-nucleating proteins in the formation, maintenance, and sarcomeric arrangement of the myofibrillar actin filaments. This is a very active field of research. We also report on several actin mutations that result in human muscle diseases.
From the four known vertebrate tropomyosin genes (designated TPM1, TPM2, TPM3, and TPM4) over 20 isoforms can be generated. The predominant TPM1 isoform, TPM1alpha, is specifically expressed in both skeletal and cardiac muscles. A newly discovered alternatively spliced isoform, TPM1kappa, containing exon 2a instead of exon 2b contained in TPM1alpha, was found to be cardiac specific and developmentally regulated. In this work, we transfected quail skeletal muscle cells with green fluorescent proteins (GFP) coupled to chicken TPM1alpha and chicken TPM1kappa and compared their localizations in premyofibrils and mature myofibrils. We used the technique of fluorescence recovery after photobleaching (FRAP) to compare the dynamics of TPM1alpha and TPM1kappa in myotubes. TPM1alpha and TPM1kappa incorporated into premyofibrils, nascent myofibrils, and mature myofibrils of quail myotubes in identical patterns. The two tropomyosin isoforms have a higher exchange rate in premyofibrils than in mature myofibrils. F-actin and muscle tropomyosin are present in the same fibers at all three stages of myofibrillogenesis (premyofibrils, nascent myofibrils, mature myofibrils). In contrast, the tropomyosin-binding molecule nebulin is not present in the initial premyofibrils. Nebulin is gradually added during myofibrillogenesis, becoming fully localized in striated patterns by the mature myofibril stage. A model of thin filament formation is proposed to explain the increased stability of tropomyosin in mature myofibrils. These experiments are supportive of a maturing thin filament and stepwise model of myofibrillogenesis (premyofibrils to nascent myofibrils to mature myofibrils), and are inconsistent with models that postulate the immediate appearance of fully formed thin filaments or myofibrils.
Tropomyosins are present in various muscle (skeletal, cardiac, and smooth) and non-muscle cells with different isoforms characteristic of specific cell types. We describe here a novel smooth/striated chimeric isoform that was expressed in developing chick heart in addition to the classically described TM-4 type. This novel alpha-Tm tropomyosin isoform, designated as alpha-Tm-2, contains exon 2a (in place of exon 2b). The known striated muscle isoform (alpha-Tm-1) was also expressed in embryonic hearts along with the striated muscle isoform of TM-4. In adult heart, TM-4 was expressed, however, expression of both alpha-Tm-1 and alpha-Tm-2 isoforms was drastically reduced or downregulated. Interestingly, we were unable to detect the expression of alpha-Tm-2 in embryonic and adult skeletal muscle, however, the alpha-Tm-1 isoform is expressed in embryonic and adult skeletal muscle. Examination of other possible isoforms of the alpha-TM gene, i.e., alpha-smooth muscle tropomyosin (alpha-Sm), alpha-Fibroblast-1 (alpha-F1), and alpha-Fibroblast-2 (alpha-F2) revealed expression in embryonic hearts and a significant reduction of each of these isoforms in adult heart. In order to elucidate the role of the newly discovered tropomyosin isoform in chicken, we ectopically expressed the GFP fusion protein of alpha-Tm-1 and alpha-Tm-2 separately into cardiomyocytes isolated from neonatal rats. Each isoform was incorporated into organized myofibrils. Our results suggest that the alpha-TM gene may undergo both positive and negative transcriptional control in chicken hearts during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.