Transcription activator-like effector (TALE) nucleases (TALENs) mediated gene editing methods are becoming popular and have revealed the staggering complexity of genome control during development. Here, we present a simple and efficient gene knockout using TALENs in kawakawa, Euthynnus affinis, using slc24a5. We examined slc24a5 gene expression and functional differences between two TALENs that hold the TALE scaffolds, +153/+47 and +136/+63 and target slc24a5. Developmental changes in slc24a5 transcripts were seen in early-stage embryos by real-time PCR; slc24a5 expression was first detected 48 h post fertilization (hpf), which increased dramatically at 72 hpf. Four TALENs, 47- and 63-type of two different target loci (A and B), respectively, were constructed using Platinum TALEN and evaluated in vitro by a single-strand annealing (SSA) assay. TALEN activities were further evaluated in vivo by injecting TALEN mRNAs in the two-cell stage of the zygote. Most of the TALEN-induced mutants showed mosaic patterns in the retinal pigment epithelium (RPE) and fewer melanin pigments on the body at 72 hpf and later when compared to the control, implying the gene’s association with melanin pigment formation. A heteroduplex mobility assay (HMA) and the genome sequence further confirmed the TALEN-induced mutations of substitution, insertion, and deletion at an endogenous locus.
With the grim picture of millions of people living in poverty and hunger, there is also an international alarm over future world food supply. This global concern of food scarcity has established the need to not only increase the production of traditional staples but also fisheries and aquaculture. Genetically, physiologically and phenotypically, fish are the most diverse group of livings. Similar to mammals, molecular biology is being extensively used in aquaculture, be it in disease management, or growth and reproduction enhancement. In this chapter we aim to discuss the molecular methodologies applied to uplift and attain sustainability in aqua farming.
Japanese anchovy (Engraulis japonicus) is a commercially and ecologically important fish that exhibits group synchronous and multiple spawning. However, the reproductive characteristics of the male in this species, especially sperm features and activation, are still largely unknown. In this study, we confirmed that features of the sperm and characteristics of the activations, regarding sperm motility and moving velocity. The average size of the sperm was 51 ± 1.3 µm in total length and possessed a normal structure with clockwise, anticlockwise, and linear motion. The initial motility at one minute after activation in seawater was 75 ± 12% during spawning time in this species (21:00-22:00), and the initial moving velocity (196 ± 26 µm/sec) remained constant for fifteen minutes post activation. While, comparatively low motility (30 ± 10%) was found until 17:00, and the sperm was almost immotile in the morning (08:00-09:00). Swimming ability was also confirmed with sperm that swam for more than one hour in seawater without an exogenous energy supply derived from the ovary in females, suggesting the trigger for sperm activation in multiple spawning fish is possibly species dependent. This report is the first to demonstrate time specific activation, that is, circadian rhythm, in teleost males.
Artificial fertilization of cultured fish is essential for seed production using breeding techniques. However, in tuna species, the success rate of artificial fertilization is tremendously low. In this study, it was reported that the adequate procedure for ovulated egg collection and storage for artificial fertilization in kawakawa Euthynnus affinis. The collection of ovulated eggs was attempted using new techniques that disrupt only spawning activity without discontinuing ovulation. The available time to use ovulated eggs was also examined by assessing the optimal preservation process and temperature. As a result, artificial fertilization was effectively executed by assessing spawning time and thoroughly extracting ovulated eggs immediately after ovulation, with a success rate of 70% and an ovulation rate of 51.7%. Ovulated eggs could be stored with small quantities of ovarian fluid to sustain fertility. However, fertility was better preserved with Hanks’ solution. Ovulated eggs with high productivity were achieved 3 h after egg extraction when maintained in Hanks’ solution at 20 °C, leading to a supply of one-cell stage embryo for microinjection treatment constantly by continuously executing artificial fertilization. This systematic procedure permitted selective breeding by 1:1 mating between top-quality parental fish and applying several developmental engineering techniques to kawakawa breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.