Drought is one of the most destructive abiotic stresses that impact the growth, physiology, yield, and nutritional quality of seeds of crop plants. In modern agriculture, the use of nanoparticles can be beneficial due to their large surface area and higher potentiality to enter into the plant leaf during foliar application. This study aims to evaluate the effects of foliar spray containing varying doses (0, 100, and 200 ppm) of the nano-iron (Fe3O4) on the growth, physiology, yield, and seed nutritional quality of soybean under drought (40% of field capacity, FC) and well-watered (80% of FC) conditions. Leaf water status, chlorophyll content of leaves, the height of the plant, fresh leaf weight, fresh stem weight, fresh petiole weight, total dry weight, seed yield, and protein and oil content in soybean seeds were found to be suppressed by the applied drought stress. Under both drought (40% of FC) and controlled well-watered (80% of FC) conditions, the foliar application of nano-iron substantially improved the growth, physiology, yield, and quality of soybean seeds. The nanoparticles at 200 ppm increased soybean seed yield by 40.12 and 32.60% in drought and well-watered conditions, respectively, compared to the untreated plants. Furthermore, nano-iron increased the oil content of soybean seeds by 10.14 and 7.87% under drought and well-watered conditions, respectively, compared to the untreated control. Our results indicate that the application of nano-iron improved drought tolerance, yield, and seed quality of soybean, so exogenous foliar sprays of 200 ppm Fe3O4 were more effective than the other treatments in enhancing drought tolerance and can be utilized to reduce losses caused by drought stress in soybean-growing areas.
Drought has a deleterious impact on the growth, physiology, and yield of various plants, including soybean. Seaweed extracts are rich in various bioactive compounds, including antioxidants, and can be used as biostimulants for improving yield and alleviating the adverse effect of drought stress. The purpose of this study was to evaluate the effect of soybean growth and yield with different concentrations (0.0%, 5.0%, and 10.0% v/v) of water extracts of the red seaweed Gracilaria tenuistipitata var. liui under well-watered (80% of field capacity (FC) and drought (40% of FC)) conditions. Drought stress decreased soybean grain yield by 45.58% compared to well-watered circumstances but increased the water saturation deficit by 37.87%. It also decreased leaf water, chlorophyll content, plant height, and the fresh weight of the leaf, stem, and petiole. Drought stress decreased soybean grain yield by 45.58% compared to well-watered circumstances but increased the water saturation deficit by 37.87%. It also decreased leaf water, chlorophyll content, plant height, and the fresh weight of the leaf, stem, and petiole. Under both drought and well-watered situations, foliar application of seaweed extracts dramatically improved soybean growth and production. Under drought and well-watered situations, 10.0% seaweed extract increased grain yield by 54.87% and 23.97%, respectively in comparison to untreated plants. The results of this study suggest that red seaweed extracts from Gracilaria tenuistipitata var. liui may be used as a biostimulant to improve soybean yield and drought tolerance in the presence of insufficient water. However, the actual mechanisms behind these improvements need to be further investigated in field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.