Autophagy plays a crucial role in maintaining cellular homeostasis through the degradation of unwanted materials like damaged mitochondria and misfolded proteins. However, the contribution of autophagy toward a healthy cell environment is not only limited to the cleaning process. It also assists in protein synthesis when the system lacks the amino acids’ inflow from the extracellular environment due to diet consumptions. Reduction in the autophagy process is associated with diseases like cancer, diabetes, non-alcoholic steatohepatitis, etc., while uncontrolled autophagy may facilitate cell death. We need a better understanding of the autophagy processes and their regulatory mechanisms at various levels (molecules, cells, tissues). This demands a thorough understanding of the system with the help of mathematical and computational tools. The present review illuminates how systems biology approaches are being used for the study of the autophagy process. A comprehensive insight is provided on the application of computational methods involving mathematical modeling and network analysis in the autophagy process. Various mathematical models based on the system of differential equations for studying autophagy are covered here. We have also highlighted the significance of network analysis and machine learning in capturing the core regulatory machinery governing the autophagy process. We explored the available autophagic databases and related resources along with their attributes that are useful in investigating autophagy through computational methods. We conclude the article addressing the potential future perspective in this area, which might provide a more in-depth insight into the dynamics of autophagy.
BackgroundMetabolic disorders such as obesity and diabetes are diseases which develop gradually over time in an individual and through the perturbations of genes. Systematic experiments tracking disease progression at gene level are usually conducted giving a temporal microarray data. There is a need for developing methods to analyze such complex data and extract important proteins which could be involved in temporal progression of the data and hence progression of the disease.ResultsIn the present study, we have considered a temporal microarray data from an experiment conducted to study development of obesity and diabetes in mice. We have used this data along with an available Protein-Protein Interaction network to find a network of interactions between proteins which reproduces the next time point data from previous time point data. We show that the resulting network can be mined to identify critical nodes involved in the temporal progression of perturbations. We further show that published algorithms can be applied on such connected network to mine important proteins and show an overlap between outputs from published and our algorithms. The importance of set of proteins identified was supported by literature as well as was further validated by comparing them with the positive genes dataset from OMIM database which shows significant overlap.ConclusionsThe critical proteins identified from algorithms can be hypothesized to play important role in temporal progression of the data.Electronic supplementary materialThe online version of this article (10.1186/s12918-018-0600-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.