Extreme weather, fires, and land use and climate change are significantly reshaping interactions within watersheds throughout the world. Although hydrological-biogeochemical interactions within watersheds can impact many services valued by society, uncertainty associated with predicting hydrologydriven biogeochemical watershed dynamics remains high. With an aim to reduce this uncertainty, an approximately 300-km 2 mountainous headwater observatory has been developed at the East River, CO, watershed of the Upper Colorado River Basin. The site is being used as a testbed for the Department of Energy supported Watershed Function Project and collaborative efforts. Building on insights gained from research at the "sister" Rifle, CO, site, coordinated studies are underway at the East River site to gain a predictive understanding of how the mountainous watershed retains and releases water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, and other disturbances influence hydrological-biogeochemical watershed dynamics at seasonal to decadal timescales. A system-of-systems perspective and a scale-adaptive simulation approach, involving the combined use of archetypal watershed subsystem "intensive sites" are being tested at the site to inform aggregated watershed predictions of downgradient exports. Complementing intensive site hydrological, geochemical, geophysical, microbiological, geological, and vegetation datasets are long-term, distributed measurement stations and specialized experimental and observational campaigns. Several recent research advances provide insights about the intensive sites as well as aggregated watershed behavior. The East River "community testbed" is currently hosting scientists from more than 30 institutions to advance mountainous watershed methods and understanding.
Abstract. Accurate representation of soil organic matter (SOM) dynamics in Earth system models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed an SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic matter (DOM) stocks and fluxes, lignin content, and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and 14 C vertical profiles are consistent with a representation of SOM consisting of carbon compounds with relatively fast reaction rates, vertical aqueous transport, and dynamic protection on mineral surfaces.
Background: Previous studies of prenatal exposure to drinking-water nitrate and birth defects in offspring have not accounted for water consumption patterns or potential interaction with nitrosatable drugs.Objectives: We examined the relation between prenatal exposure to drinking-water nitrate and selected birth defects, accounting for maternal water consumption patterns and nitrosatable drug exposure.Methods: With data from the National Birth Defects Prevention Study, we linked addresses of 3,300 case mothers and 1,121 control mothers from the Iowa and Texas sites to public water supplies and respective nitrate measurements. We assigned nitrate levels for bottled water from collection of representative samples and standard laboratory testing. Daily nitrate consumption was estimated from self-reported water consumption at home and work.Results: With the lowest tertile of nitrate intake around conception as the referent group, mothers of babies with spina bifida were 2.0 times more likely (95% CI: 1.3, 3.2) to ingest ≥ 5 mg nitrate daily from drinking water (vs. < 0.91 mg) than control mothers. During 1 month preconception through the first trimester, mothers of limb deficiency, cleft palate, and cleft lip cases were, respectively, 1.8 (95% CI: 1.1, 3.1), 1.9 (95% CI: 1.2, 3.1), and 1.8 (95% CI: 1.1, 3.1) times more likely than control mothers to ingest ≥ 5.42 mg of nitrate daily (vs. < 1.0 mg). Higher water nitrate intake did not increase associations between prenatal nitrosatable drug use and birth defects.Conclusions: Higher water nitrate intake was associated with several birth defects in offspring, but did not strengthen associations between nitrosatable drugs and birth defects.Citation: Brender JD, Weyer PJ, Romitti PA, Mohanty BP, Shinde MU, Vuong AM, Sharkey JR, Dwivedi D, Horel SA, Kantamneni J, Huber JC Jr., Zheng Q, Werler MM, Kelley KE, Griesenbeck JS, Zhan FB, Langlois PH, Suarez L, Canfield MA, and the National Birth Defects Prevention Study. 2013. Prenatal nitrate intake from drinking water and selected birth defects in offspring of participants in the National Birth Defects Prevention Study. Environ Health Perspect 121:1083–1089; http://dx.doi.org/10.1289/ehp.1206249
To understand how redox processes influence carbon, nitrogen, and iron cycling within the intrameander hyporheic zone, we developed a biotic and abiotic reaction network and incorporated it into the reactive transport simulator PFLOTRAN. Two‐dimensional reactive flow and transport simulations were performed (1) to evaluate how transient hydrological conditions control the lateral redox zonation within an intrameander region of the East River in Colorado and (2) to quantify the impact of a single meander on subsurface exports of carbon and other geochemical species to the river. The meander's overall contribution to the river was quantified by integrating geochemical outfluxes along the outside of the meander bend. The model was able to capture the field‐observed trends of dissolved oxygen, nitrate, iron, pH, and total inorganic carbon along a 2‐D transect. Consistent with field observations, simulated dissolved oxygen and nitrate decreased along the intrameander flow paths while iron (Fe2+) concentration increased. The simulation results further demonstrated that the reductive potential of the lateral redox zonation was controlled by groundwater velocities resulting from river stage fluctuations, with low‐water conditions promoting reducing conditions. The sensitivity analysis results showed that permeability had a more significant impact on biogeochemical zonation compared to the reaction pathways under transient hydrologic conditions. The simulation results further indicated that the meander acted as a sink for organic and inorganic carbon as well as iron during the extended baseflow and high‐water conditions; however, these geochemical species were released into the river during the falling limb of the hydrograph.
We use 3‐D high‐resolution reactive transport modeling to investigate whether the spatial distribution of organic‐carbon‐rich and chemically reduced sediments located in the riparian zone and temporal variability in groundwater flow direction impact the formation and distribution of nitrogen hot spots (regions that exhibit higher reaction rates when compared to other locations nearby) and hot moments (times that exhibit high reaction rates as compared to longer intervening time periods) within the Rifle floodplain in Colorado. Groundwater flows primarily toward the Colorado River from the floodplain but changes direction at times of high river stage. The result is that oxic river water infiltrates the Rifle floodplain during these relatively short‐term events. Simulation results indicate that episodic rainfall in the summer season leads to the formation of nitrogen hot moments associated with Colorado River rise and resulting river infiltration into the floodplain. The results further demonstrate that the naturally reduced zones (NRZs) present in sediments of the Rifle floodplain have a higher potential for nitrate removal, approximately 70% greater than non‐NRZs for typical hydrological conditions. During river water infiltration, nitrate reduction capacity remains the same within the NRZs, however, these conditions impact non‐NRZs to a greater extent (approximately 95% less nitrate removal). Model simulations indicate chemolithoautotrophs are primarily responsible for the removal of nitrate in the Rifle floodplain. These nitrogen hot spots and hot moments are sustained by microbial respiration and the chemolithoautotrophic oxidation of reduced minerals in the riparian zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.