This paper presents a Cluster-based Dynamic Differential Evolution with external Archive (CDDE_Ar) for global optimization in dynamic fitness landscape. The algorithm uses a multipopulation method where the entire population is partitioned into several clusters according to the spatial locations of the trial solutions. The clusters are evolved separately using a standard differential evolution algorithm. The number of clusters is an adaptive parameter, and its value is updated after a certain number of iterations. Accordingly, the total population is redistributed into a new number of clusters. In this way, a certain sharing of information occurs periodically during the optimization process. The performance of CDDE_Ar is compared with six state-of-the-art dynamic optimizers over the moving peaks benchmark problems and dynamic optimization problem (DOP) benchmarks generated with the generalized-dynamic-benchmark-generator system for the competition and special session on dynamic optimization held under the 2009 IEEE Congress on Evolutionary Computation. Experimental results indicate that CDDE_Ar can enjoy a statistically superior performance on a wide range of DOPs in comparison to some of the best known dynamic evolutionary optimizers.
In this paper, we consider the robot motion (or task) planning problem under some given time bounded high level specifications. We use metric interval temporal logic (MITL), a member of the temporal logic family, to represent the task specification and then we provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find a feasible motion (or path) sequence for the robot to complete the task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.