The increasing availability of electronic health care records has provided remarkable progress in the field of population health. In particular the identification of disease risk factors has flourished under the surge of available data. Researchers can now access patient data across a broad range of demographics and geographic locations. Utilizing this Big healthcare data researchers have been able to empirically identify specific high-risk conditions found within differing populations. However to date the majority of studies approached the issue from the top down, focusing on the prevalence of specific diseases within a population. Through our work we demonstrate the power of addressing this issue bottom-up by identifying specifically which diseases are higher-risk for a specific population. In this work we demonstrate that network-based analysis can present a foundation to identify pairs of diagnoses that differentiate across population segments. We provide a case study highlighting differences between high and low income individuals in the United States. This work is particularly valuable when addressing population health management within resource-constrained environments such as community health programs where it can be used to provide insight and resource planning into targeted care for the population served.
Mobile health (mHealth) technologies offer an opportunity to enable the care and support of community-dwelling older adults, however, research examining the use of mHealth in delivering quality of life (QoL) improvements in the older population is limited. We developed a tablet application (eSeniorCare) based on the Successful Aging framework and investigated its feasibility among older adults with low socioeconomic status. Twenty five participants (females = 14, mean age = 65 years) used the app to set and track medication intake reminders and health goals, and to play selected casual mobile games for 24 weeks. The Older person QoL and Short Health (SF12v2) surveys were administered before and after the study. The Wilcoxon rank tests were used to determine differences from baseline, and thematic analysis was used to analyze post-study interview data. The improvements in health-related QoL (HRQoL) scores were statistically significant (V=41.5, p=0.005856) across all participants. The frequent eSeniorCare users experienced statistically significant improvements in their physical health (V=13, p=0.04546) and HRQoL (V=7.5, p=0.0050307) scores. Participants reported that the eSeniorCare app motivated timely medication intake and health goals achievement, whereas tablet games promoted mental stimulation. Participants were willing to use mobile apps to self-manage their medications (70%) and adopt healthy activities (72%), while 92% wanted to recommend eSeniorCare to a friend. This study shows the feasibility and possible impact of an mHealth tool on the health-related QoL in older adults with a low socioeconomic status. mHealth support tools and future research to determine their effects are warranted for this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.