Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell α-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if α-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota in mice expressing a human α-defensin (DEFA5) and in mice lacking an enzyme required for processing of murine α-defensins. We detected significant α-defensin-dependent changes in microbiota composition, but not in total bacterial numbers, in these complementary models. Furthermore, DEFA5-expressing mice had striking losses of Segmented Filamentous Bacteria and fewer interleukin 17-producing lamina propria T cells. These data ascribe a new homeostatic role for α-defensins in regulating the makeup of the commensal microbiota.
Although the development of regulatory T cells (T(reg) cells) in the thymus is defined by expression of the lineage marker Foxp3, the precise function of Foxp3 in T(reg) cell lineage commitment is unknown. Here we examined T(reg) cell development and function in mice with a Foxp3 allele that directs expression of a nonfunctional fusion protein of Foxp3 and enhanced green fluorescent protein (Foxp3DeltaEGFP). Thymocyte development in Foxp3DeltaEGFP male mice and Foxp3DeltaEGFP/+ female mice recapitulated that of wild-type mice. Although mature EGFP(+) CD4(+) T cells from Foxp3DeltaEGFP mice lacked suppressor function, they maintained the characteristic T(reg) cell 'genetic signature' and failed to develop from EGFP(-) CD4(+) T cells when transferred into lymphopenic hosts, indicative of their common ontogeny with T(reg) cells. Our results indicate that T(reg) cell effector function but not lineage commitment requires the expression of functional Foxp3 protein.
SUMMARY
Although both natural and induced regulatory T (nTreg and iTreg) cells can enforce tolerance, the mechanisms underlying their synergistic actions have not been established. We examined the functions of nTreg and iTreg cells by adoptive transfer immunotherapy of newborn Foxp3-deficient mice. As monotherapy, only nTreg cells prevented disease lethality, but did not suppress chronic inflammation and autoimmunity. Provision of Foxp3-sufficient conventional T cells with nTreg cells reconstituted the iTreg pool and established tolerance. In turn, acute depletion of iTreg cells in rescued mice resulted in weight loss and inflammation. Whereas the transcriptional signatures of nTreg and in vivo derived iTreg cells were closely matched, there was minimal overlap in their T cell receptor (TCR) repertoires. Thus, iTreg cells are an essential non-redundant regulatory subset that supplements nTreg cells, in part by expanding TCR diversity within regulatory responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.