The interaction of surfactants dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB), and p-tert-octylphenoxypolyoxyethylene (9.5) ether (TX-100) with guar (Gr), carboxymethylhydroxypropyl guar (CMHPG), diutan (Dn), and xanthan (Xn) gums has been studied employing conductometry, tensiometry, microcalorimetry, viscometry, and atomic force microscopy (AFM) techniques. Both weak and strong interactions were observed. CTAB interacted stronger than DTAB with the gums. The surfactant-gum interaction process was enhanced by the presence of borate ions in the solution; the borate ion itself also manifested interaction with the surfactants comparable with that of water-soluble polymers polyvinyl alcohol, polyoxyethylene, and so forth. Viscometric results supported configurational changes of the gum molecules by interaction with surfactants. The geometry of the pure gums and their CTAB interacted products in the dried states was ascertained from AFM measurements; spherical and prolate shapes were observed for pure gums, and distorted states were observed for their surfactant complexed species. Detailed topological features of these entities were ascertained.
The conformational dynamics of poly(acrylic acid) induced by pH change is reported here. Poly(acrylic acid) immobilized on gold surface was exposed to pH changes, and the conformational changes thus induced were followed in real time using surface plasmon resonance spectroscopy. The temporal profile of the stretching-coiling phenomenon showed a minimum point, which was proposed to be arising due to the contradictory behavior of two different property changes in the polymeric system. Normally surface plasmon resonance (SPR) response would be a convoluted effect of the thickness and refractive index changes, but the behavior observed here, where the SPR response is predominantly governed by either one of the two, is unique and to the author's knowledge is a feature that is observed for the first time. Analysis of the kinetics of the angle change revealed that it takes longer for the polymer to stretch than it takes for it to collapse, with the kinetic rate constants varying by at least an order of magnitude. The SPR angle change as well as the kinetic constants increased linearly with molecular weight. Effect of Ca2+ was studied, and it was found that the polymer was locked in its conformation due to the binding of the multivalent cations.
Gums are routinely used in food industry, pharmacy and oil recovery process. In these uses, the hydrocolloids very often encounter interactions with salts at moderate to high temperature. Since they are normally employed in the form of solution and gel, their viscous or fluidity properties need detailed investigation. In the present work, properties such as water vapor adsorption of finely powdered carboxymethylhydroxypropyl derivatized guar (CMHPG) as well as xanthan (Xn) and diutan (Dn) gums, their hydration in solution, their viscosity behaviors, and salt effects on fluidity have been studied. The concentration domains for the existence of free and associated molecules in the studied solutions have been assessed from the viscosity results. The gums have been found to bind a fair amount of water from the vapor phase with them. In solution, they can interact and arrest a large amount of water in their folded configuration. Intrinsic viscosities of the gums in aqueous medium declined in the presence of salts. The activation energies for their viscous flow were moderate and comparable, and were dependent on their concentrations. From the power law relation and viscosity master curve behavior mostly two critical association states of the macromolecular dispersions were envisaged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.