Detection of Intrusion is an essential expertise business segment as well as a dynamic area of study and expansion caused by its requirement. Modern day intrusion detection systems still have these limitations of time sensitivity. The main requirement is to develop a system which is able of handling large volume of network data to detect attacks more accurately and proactively. Research conducted by on the KDDCUP99 dataset resulted in a various set of attributes for each of the four major attack types. Without reducing the number of features, detecting attack patterns within the data is more difficult for rule generation, forecasting, or classification. The goal of this research is to present a new method that Compare results of appropriately categorized and inaccurately categorized as proportions and the features chosen. Data mining is used to clean, classify and examine large amount of network data. Since a large volume of network traffic that requires processing, we use data mining techniques. Different Data Mining techniques such as clustering, classification and association rules are proving to be useful for analyzing network traffic. This paper presents the survey on data mining techniques applied on intrusion detection systems for the effective identification of both known and unknown patterns of attacks, thereby helping the users to develop secure information systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.