The polyamines spermidine and spermine along with the diamine putrescine are involved in many cellular processes, including chromatin condensation, maintenance of DNA structure, RNA processing, translation and protein activation. The polyamines influence the formation of compacted chromatin and have a well-established role in DNA aggregation. Polyamines are used in the posttranslational modification of eukaryotic initiation factor 5A, which regulates the transport and processing of specific RNA. The polyamines also participate in a novel RNA-decoding mechanism, a translational frame-shift, of at least two known genes, the TY1 transposon and mammalian antizyme. Polyamines are crucial for their own regulation and are involved in feedback mechanisms affecting both polyamine synthesis and catabolism. Recently, it has become apparent that the polyamines are able to influence the action of the protein kinase casein kinase 2. Here we address several roles of polyamines in gene expression.
An activated Ki-ras was expressed in the human colon adenocarcinoma cell line Caco-2 to study the effects of Ki-ras oncogene on polyamine metabolism during gastrointestinal tumorigenesis. Multiple clones selected for expression of the mutant Ki-ras transgene displayed a suppression of transcription of a key catabolic enzyme in polyamine catabolism spermidine/spermine N1-acetyltransferase (SSAT). Gene expression analysis, with cDNA microarrays, showed that Ki-ras transfected clones had decreased levels of expression, compared to mock transfected cells, of peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the nuclear hormone receptor family and an important regulator of cell proliferation and differentiation. The activated Ki-ras suppressed SSAT expression by a mechanism involving the PPARgamma response element (PPRE) located at +48 bp relative to the transcription start site of the SSAT gene. Transient expression of the PPARgamma protein in Ki-ras expressing Caco-2 clones, or treatment with the PPARgamma ligand ciglitazone, led to an increase in the SSAT promoter activity. A MEK1/2 inhibitor PD98059 induced transcription of both PPARgamma and SSAT genes in the activated Ki-ras clones, suggesting that the mitogen-activated protein kinases (MAPKs) were involved in the regulation of SSAT expression by PPARgamma. We concluded that mutated Ki-ras suppressed SSAT via a transcriptional mechanism involving the PPARgamma signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.