We propose an improved random forest classifier that performs classification with minimum number of trees. The proposed method iteratively removes some unimportant features. Based on the number of important and unimportant features, we formulate a novel theoretical upper limit on the number of trees to be added to the forest to ensure improvement in classification accuracy. Our algorithm converges with a reduced but important set of features. We prove that further addition of trees or further reduction of features does not improve classification performance. The efficacy of the proposed approach is demonstrated through experiments on benchmark datasets. We further use the proposed classifier to detect mitotic nuclei in the histopathological datasets of breast tissues. We also apply our method on the industrial dataset of dual phase steel microstructures to classify different phases. Results of our method on different datasets show significant reduction in average classification error compared to a number of competing methods.
We propose a generative model for constructing an efficient set of distinctive textures for recognizing architectural distortion in digital mammograms. In the first layer of the proposed two-layer architecture, the mammogram is analyzed by a multiscale oriented filter bank to form texture descriptor of vectorized filter responses. Our model presumes that every mammogram can be characterized by a "bag of primitive texture patterns" and the set of textural primitives (or textons) is represented by a mixture of Gaussians which builds up the second layer of the proposed model. The observed textural descriptor in the first layer is assumed to be a stochastic realization of one (hard mapping) or more (soft mapping) textural primitive(s) from the second layer. The results obtained on two publicly available datasets, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM), demonstrate the efficacy of the proposed approach.
Histopathological grading of cancer not only offers an insight to the patients' prognosis but also helps in making individual treatment plans. Mitosis counts in histopathological slides play a crucial role for invasive breast cancer grading using the Nottingham grading system. Pathologists perform this grading by manual examinations of a few thousand images for each patient. Hence, finding the mitotic figures from these images is a tedious job and also prone to observer variability due to variations in the appearances of the mitotic cells. We propose a fast and accurate approach for automatic mitosis detection from histopathological images. We employ area morphological scale space for cell segmentation. The scale space is constructed in a novel manner by restricting the scales with the maximization of relative-entropy between the cells and the background. This results in precise cell segmentation. The segmented cells are classified in mitotic and non-mitotic category using the random forest classifier. Experiments show at least 12% improvement in F1 score on more than 450 histopathological images at 40× magnification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.