In this paper, we introduce a new three-step iteration scheme and establish convergence results for approximation of fixed points of nonexpansive mappings in the framework of Banach space. Further, we show that the new iteration process is faster than a number of existing iteration processes. To support the claim, we consider a numerical example and approximated the fixed point numerically by computer using Matlab.
The purpose of this paper is to introduce a new three step iteration scheme for approximation of fixed points of the nonexpansive mappings. We show that our iteration process is faster than all of the Picard, the Mann, the Agarwal et al., and the Abbas et al. iteration processes. We support our analytic proof by a numerical example in which we approximate the fixed point by a computer using Matlab program. We also prove some weak convergence and strong convergence theorems for the nonexpansive mappings. MSC: 47H09; 47H10
In this paper, using the modified hybrid Picard-Mann iteration process, we establish -convergence and strong convergence theorems for total asymptotically nonexpansive mappings on a CAT(0) space. Results established in the paper extend and improve a number of results in the literature. A numerical example is also given to examine the fastness of the proposed iteration process under different control conditions and initial points.
MSC: 47H09; 47H10
The purpose of this paper is to investigate the demiclosed principle, the existence theorems and convergence theorems in CAT(0) spaces for a class of mappings which is essentially wider than that of asymptotically nonexpansive mappings. The structure of fixed point set of such mappings is also studied. Our results generalize, unify and extend several comparable results in the existing literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.