Context. It is well known that the polarity of the Sun's magnetic field reverses or flips around the maximum of each 11 year solar cycle. This is commonly known as polar field reversal and plays a key role in deciding the polar field strength at the end of a cycle, which is crucial for the prediction of the upcoming cycle. Aims. To investigate solar polar fields during cycle 24, using measurements of solar magnetic fields in the latitude range 55 • -90 • and 78 • -90 • , to report a prolonged and unusual hemispheric asymmetry in the polar field reversal pattern in solar cycle 24. Methods. This study was carried out using medium resolution line-of-sight synoptic magnetograms from the magnetic database of the National Solar Observatory at Kitt Peak (NSO/KP), USA for the period between February 1975 and October 2017, covering solar cycles 21 -24 and high-resolution line-of-sight synoptic magnetograms from the Michaelson Doppler Imager instrument onboard the Solar Heliospheric Observatory. Synoptic magnetograms using radial measurements from the Heliospheric Magnetic Imager instrument onboard the Solar Dynamics Observatory, covering solar cycle 23 and 24, were also used. Results. We show that the Southern solar hemisphere unambiguously reversed polarity in mid-2013 while the reversal in the field in the Northern solar hemisphere started as early as June 2012, was followed by a sustained period of near-zero field strength lasting until the end of 2014, after which the field began to show a clear rise from its near-zero value. While this study compliments a similar study carried out using microwave brightness measurements (Gopalswamy et al. 2016) which claimed that the field reversal process in cycle 24 was completed by the end of 2015, our results show that the field reversal in cycle 24 was completed earlier i.e. in late 2014. Signatures of this unusual field reversal pattern were also clearly identifiable in the solar wind, using our observations of interplanetary scintillation at 327 MHz which supported our magnetic field observations and confirmed that the field reversal process was completed at the end of 2014.
On 7 January 2005 (Ap=40) prompt penetration electric field perturbations of opposite polarities were observed over Thumba and Jicamarca on a few occasions during 13:45–16:30 UT. However, the electric field was found to be eastward during 14:45–15:30 UT over both Thumba and Jicamarca contrary to the general expectation wherein opposite polarities are expected at nearly antipodal points. On closer scrutiny, three important observational features are noticed during 14:10–15:15 UT. First, during 14:10–14:45 UT, despite increasing southward interplanetary magnetic field (IMF) Bz condition, the already westward electric field over Thumba weakened (less westward) while the eastward electric field over Jicamarca intensified (more eastward). Second, the electric field not only became anomalously eastward over Thumba but also got intensified further during 14:45–15:00 UT similar to Jicamarca. Third, during 15:00–15:15 UT, despite IMF Bz remaining steadily southward, the eastward electric field continued to intensify over Thumba but weakened over Jicamarca. It is suggested that the changes in IMF By component under southward IMF Bz condition are responsible for skewing the ionospheric equipotential patterns over the dip equator in such a way that Thumba came into the same DP2 cell as that of Jicamarca leading to anomalous electric field variations. Magnetic field measurements along the Indian and Jicamarca longitude sectors and changes in high‐latitude ionospheric convection patterns provide credence to this proposition. Thus, the present investigation shows that the variations in IMF By are fundamentally important to understand the prompt penetration effects over low latitudes.
This investigation shows that the significant electric field disturbances in the dip‐equatorial ionosphere during the geomagnetic storm of 6–8 September 2017 are due to the passage of two consecutive interplanetary coronal mass ejections (ICMEs). During the passage of the first ICME sheath, a long duration (∼10 hr) prompt penetration (PP) event is operational in which 60‐min periodic component is found to be present in vertical drift as well as in equatorial electrojet, but the 45‐min periodicity, though present, is not significant in equatorial electrojet. On 8 September, the shock associated with the second ICME enhances the F region vertical plasma drift to ∼150 m/s in the evening hours which is one of the highest vertical drift ever measured over Jicamarca. The same PP electric field causes unusually large enhancement of the equatorial electrojet strength to ∼135 nT in the early morning hours over the Philippine sector. The disturbance dynamo (DD) that follows the storm causes an upward vertical drift of ∼55 m/s during postmidnight hours over Jicamarca which is one of the highest observed. These unusually large electric field perturbations cause significant changes in the F region plasma fountain. It is shown that these electric field perturbations cannot be accounted by PP/DD electric field associated with the geomagnetic storm only and significant contribution from substorm is conspicuous. Therefore, the present investigation highlights the need to evaluate the role of substorm in unusually large electric field perturbations over equatorial ionosphere.
Coordinated digisonde and OI 630.0 nm airglow observations from Thumba (TVM), an Indian dip equatorial station, in conjunction with magnetic and geosynchronous particle flux measurements, reveal three different types of electric field disturbances in the equatorial ionosphere-thermosphere system (ITS) occurring in succession over a period of 6 h on a single night (22-23 January,2012; A p = 24). These include (1) westward electric field perturbations owing to a pseudo-breakup and a substorm event, each lasting for about 30 min; (2) eastward electric field perturbations continuing for about an hour, owing to the southward excursion of Z component of interplanetary magnetic field (B z ); and (3) DP2-type fluctuating (period ∼40 min) electric field perturbation sustaining for about 4 h. The pseudo-breakup and the fully grown substorm events are found to be longitudinally localized and different in terms of response in the westward auroral electrojet index (AL) as well as geosynchronous electron/proton injections. The polarity of the prompt penetration of interplanetary electric field that affects the equatorial ionosphere is observed to be eastward during 2100-2200 IST (Indian Standard Time) which is observationally sparse but consistent with modeling studies. Interestingly, on the same night, DP2-type electric field fluctuations with ∼40 min periodicity and occasional eastward polarity (akin to daytime) are also found to affect the equatorial ITS for about 4 h (2200-0200 IST). The case study, thus, brings out different processes that constitute a long duration prompt penetration event which, otherwise, would have been categorized as a single event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.