DNA sequences are cut into smaller fragments using restriction enzymes in order to facilitate analysis. Application of different restriction enzymes to multiple copies of a DNA sequence generates many overlapping fragments. To reconstruct the original DNA, these fragments need to be sequenced and assembled. This problem of finding the original order of the fragments is called the genome map assembly problem. We propose a constraint automaton solution to solve the genome map assembly problem for both error prone and error free data. Plasmid vectors puc57, pKLAC1-malE, pTXB1 and phage vector Adenovirus2, having a size in base pairs of 2710, 6706, 10153 and 35937 respectively, were used to prove that computational time for solving genome map assembly problem using constraint automaton solution is linear with both precise and approximate data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.