Background: Glucagon-like peptide 1 agonists differ in chemical structure, duration of action and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. Methods: We randomly assigned patients with type 2 diabetes and cardiovascular disease to the addition of once-weekly subcutaneous injection of albiglutide (30 mg to 50 mg) or matching placebo to standard care. We hypothesized that albiglutide would be noninferior to placebo for the primary outcome of first occurrence of cardiovascular death, myocardial infarction, or stroke. If noninferiority was confirmed by an upper limit of the 95% confidence interval for the hazard ratio of less than 1.30, closed-testing for superiority was prespecified. Findings: Overall, 9463 participants were followed for a median of 1.6 years. The primary composite outcome occurred in 338 of 4731 patients (7.1%; 4.6 events per 100 person-years) in the albiglutide group and in 428 of 4732 patients (9.0%; 5.9 events per 100 person-years) in the placebo group (hazard ratio, 0.78; 95% confidence interval [CI ], 0.68 to 0.90), indicating that albiglutide, was superior to placebo (P<0.0001 for noninferiority, P=0.0006 for superiority). The incidence of acute pancreatitis (albiglutide 10 patients and placebo 7 patients), pancreatic cancer (6 and 5), medullary thyroid carcinoma (0 and 0), and other serious adverse events did not differ significantly between the two groups. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. (Funded by GlaxoSmithKline; Harmony Outcomes ClinicalTrials.gov number, NCT02465515.) noninferiority; P = 0.06 for superiority). There seems to be variation in the results of existing trials with GLP-1 receptor agonists, which if correct, might reflect drug structure or duration of action, patients studied, duration of follow-up or other factors.
Sterol regulatory element binding protein (SREBP)-1 is a transcription factor with important roles in the control of fatty acid metabolism and adipogenesis. Little information is available regarding the expression of this molecule in human health or disease. Exposure of isolated human adipocytes to insulin enhanced SREBP1 gene expression and promoted its proteolytic cleavage to the active form. Furthermore, 3 h of in vivo hyperinsulinemia also significantly increased SREBP1 gene expression in human skeletal muscle. Transcript levels of SREBP1c, the most abundant isoform in adipose tissue, were significantly decreased in the subcutaneous adipose tissue of obese normoglycemic and type 2 diabetic subjects compared with that of nonobese normoglycemic control subjects. In skeletal muscle, SREBP1 expression was significantly reduced in type 2 diabetic subjects but not in obese subjects. Within the diabetic group, the extent of SREBP1 suppression was inversely related to metabolic control and was normalized by 3 h of in vivo hyperinsulinemia. Exposure of isolated human adipocytes to tumor necrosis factor-␣ (TNF-␣) produced a marked and specific decrease in the mRNA encoding the SREBP1c isoform and completely blocked the insulin-induced cleavage of SREBP1 protein. Thus, both the expression and proteolytic maturation of human SREBP1 are positively modulated by insulin. The specific reduction in the SREBP1c isoform seen in the adipose tissue of obese and type 2 diabetic subjects can be recapitulated ex vivo by TNF-␣, suggesting a possible mechanism for this association.
Impaired insulin action is a key feature of type 2 diabetes and is also found, to a more extreme degree, in familial syndromes of insulin resistance. Although inherited susceptibility to insulin resistance may involve the interplay of several genetic loci, no clear examples of interactions among genes have yet been reported. Here we describe a family in which five individuals with severe insulin resistance, but no unaffected family members, were doubly [corrected] heterozygous with respect to frameshift/premature stop mutations in two unlinked genes, PPARG and PPP1R3A these encode peroxisome proliferator activated receptor gamma, which is highly expressed in adipocytes, and protein phosphatase 1, regulatory subunit 3, the muscle-specific regulatory subunit of protein phosphatase 1, which are centrally involved in the regulation of carbohydrate and lipid metabolism, respectively. That mutant molecules primarily involved in either carbohydrate or lipid metabolism can combine to produce a phenotype of extreme insulin resistance provides a model of interactions among genes that may underlie common human metabolic disorders such as type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.