Abstract. In contrast to mouse epidermal cells, human skin keratinocytes are rather resistant to transformation in vitro. Immortalization has been achieved by SV40 but has resulted in cell lines with altered differentiation. We have established a spontaneously transformed human epithelial cell line from adult skin, which maintains full epidermal differentiation capacity. This HaCaT cell line is obviously immortal (>140 passages), has a transformed phenotype in vitro (clonogenic on plastic and in agar) but remains nontumorigenic. Despite the altered and unlimited growth potential, HaCaT cells, similar to normal keratinocytes, reform an orderly structured and differentiated epidermal tissue when transplanted onto nude mice. Differentiation-specific keratins (Nos. 1 and 10) and other markers (involucrin and filaggrin) are expressed and regularly located. Thus, HaCaT is the first permanent epithelial cell line from adult human skin that exhibits normal differentiation and provides a promising tool for studying regulation of keratinization in human cells. On karyotyping this line is aneuploid (initially hypodiploid) with unique stable marker chromosomes indicating monoclonal origin. The identity of the HaCaT line with the tissue of origin was proven by DNA fingerprinting using hypervariable minisatellite probes. This is the first demonstration that the DNA fingerprint pattern is unaffected by long-term cultivation, transformation, and multiple chromosomal alterations, thereby offering a unique possibility for unequivocal identification of human cell lines.
Skin equivalents formed by keratinocytes cocultured with fibroblasts embedded in collagen lattices represent promising tools for mechanistic studies of skin physiology, for pharmacotoxicologic testing, and for the use as skin substitutes in wound treatment. Such cultures would be superior in defined media to avoid interference with components of serum or tissue extracts. Here we demonstrate that a defined medium (supplemented keratinocyte defined medium) supports epidermal morphogenesis in organotypic cocultures equally well as serum-containing medium (mixture of Ham's F12 and Dulbecco's modified Eagle's medium), as documented by hallmarks of the epidermal phenotype studied by immunofluorescence and electron microscopy. In both cases regularly structured, orthokeratinized epithelia evolved with similar kinetics. Morphology in mixture of Ham's F12 and Dulbecco's modified Eagle's medium was slightly hyperplastic, and keratins 1 and 10 synthesis less co-ordinated than in supplemented keratinocyte defined medium, but a consistently inverted sequence of expression of keratins 1 and 10 was found in either medium. The late differentiation markers filaggrin, involucrin, keratin 2e, and transglutaminase 1 corresponded in their typical distribution in upper suprabasal layers. Keratin 16 persisted under both conditions indicating the activated epidermal state. Keratinocyte proliferation was comparable in both media, whereas fibroblast multiplication and proliferation was delayed and reduced in supplemented keratinocyte defined medium. In both media, ultrastructural features of epidermal differentiation as well as reconstitution of a basement membrane occurred similarly. Immature lamellar bodies and cytoplasmatic vacuoles, however, indicated an impaired lipid metabolism in supplemented keratinocyte defined medium. Nevertheless, these defined organotypic cocultures provide a suitable basis for in vitro skin models to study molecular mechanisms of tissue homeostasis and for use in pharmacotoxicologic testing.
The epidermis functions in skin as first defense line or barrier against environmental impacts, resting on extracellular matrix (ECM) of the dermis underneath. Both compartments are connected by the basement membrane (BM), composed of a set of distinct glycoproteins and proteoglycans. Herein we are reviewing molecular aspects of BM structure, composition, and function regarding not only (i) the dermoepidermal interface but also (ii) the resident microvasculature, primarily focusing on the per se nonscaffold forming components perlecan and nidogen-1 and nidogen-2. Depletion or functional deficiencies of any BM component are lethal at some stage of development or around birth, though BM defects vary between organs and tissues. Lethality problems were overcome by developmental stage- and skin-specific gene targeting or by cell grafting and organotypic (3D) cocultures of normal or defective cells, which allows recapitulating BM formation de novo. Thus, evidence is accumulating that BM assembly and turnover rely on mechanical properties and composition of the adjacent ECM and the dynamics of molecular assembly, including further “minor” local components, nidogens largely functioning as catalysts or molecular adaptors and perlecan as bridging stabilizer. Collectively, orchestration of BM assembly, remodeling, and the role of individual players herein are determined by the developmental, tissue-specific, or functional context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.