Evolutionary Algorithms have been applied to single and multiple objectives optimization problems, with a strong emphasis on problems, solved through numerical simulations. However in several engineering problems, there is limited availability of suitable models and there is need for optimization of realistic or experimental configurations. The multiobjective optimization of an experimental setup is addressed in this work. Experimental setups present a number of challenges to any optimization technique including: availability only of pointwise information, experimental noise in the objective function, uncontrolled changing of environmental conditions and measurement failure. This work introduces a multiobjective evolutionary algorithm capable of handling noisy problems with a particular emphasis on robustness against unexpected measurements (outliers). The algorithm is based on the Strength Pareto Evolutionary Algorithm (SPEA) of Zitzler and Thiele and includes the new concepts of domination dependent lifetime, reevaluation of solutions and modifications in the update of the archive population. Several tests on prototypical functions underline the improvements in convergence speed and robustness of the extended algorithm. The proposed algorithm is implemented to the Pareto optimization of the combustion process of a stationary gas turbine in an industrial setup. The Pareto front is constructed for the objectives of minimization of NO emissions and reduction of the pressure fluctuations (pulsation) of the flame. Both objectives are conflicting affecting the environment and the lifetime of the turbine, respectively. The optimization leads a Pareto front corresponding to reduced emissions and pulsation of the burner. The physical implications of the solutions are discussed and the algorithm is evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.