The first living things may have consisted of no more than RNA or RNA-like molecules bound to the surfaces of mineral particles. A key aspect of this theory is that these mineral particles have binding sites for RNA and its prebiotic precursors. The object of this study is to explore the binding properties of two of the best studied minerals, montmorillonite and hydroxylapatite, for possible precursors of RNA. The list of compounds investigated includes purines, pyrimidines, nucleosides, nucleotides, nucleotide coenzymes, diaminomaleonitrile and aminoimidazole carboxamide. Affinities for hydroxylapatite are dominated by ionic interactions between negatively charged small molecules and positively charged sites in the mineral. Binding to montmorillonite presents a more complex picture. These clay particles have a high affinity for organic ring structures which is augmented if they are positively charged. This binding probably takes place on the negatively charged faces of these sheet-like clay particles. Additional binding sites on the edges of these sheets have a moderate affinity for negatively charged molecules. Small molecules that bind to these minerals sometimes bind independently to sites on the minerals and sometimes bind cooperatively with favorable interactions between the bound molecules.
Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20-50 cm away from large trunks of two species felled by Hugo (1989) and Georges (1998) three times during wet and dry seasons over the two years following the study conducted by Georges. Soil microbial biomass, % C and % N were significantly higher under than away from logs felled by both hurricanes (i.e., 1989 and 1998), at all sampling times and at both depths (0-10 and 10-20 cm). Frass from wood boring beetles may contribute to early effects. Root length was greater away from logs during the dry season, and under logs in the wet season. Root length was correlated with microbial biomass C, soil N and soil moisture (R = 0.36, 0.18, and 0.27, respectively; all p values < 0.05). Microbial biomass C varied significantly among seasons but differences between positions (under vs. away) were only suggestive. Microbial C was correlated with soil N (R = 0.35). Surface soil on the upslope side of the logs had significantly more N and microbial biomass, likely from accumulation of leaf litter above the logs on steep slopes. We conclude that decaying wood can provide ephemeral resources that are exploited by tree roots during some seasons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.