Nondestructive three-dimensional mapping of grain shape, crystallographic orientation, and grain boundary geometry by diffraction contrast tomography (DCT) provides opportunities for the study of the interaction between intergranular stress corrosion cracking and microstructure. A stress corrosion crack was grown through a volume of sensitized austenitic stainless steel mapped with DCT and observed in situ by synchrotron tomography. Several sensitization-resistant crack-bridging boundaries were identified, and although they have special geometric properties, they are not the twin variant boundaries usually maximized during grain boundary engineering.
Highlights: Microstructure information from EBSD analysis has been correlated with SKPFM maps SKPFM assessment in 38% and 88% relative humidity was carried out Ferrite and austenite have a Volta potential difference of 70-90 mV Cold deformation reduced Volta potential differences between ferrite and austenite Cold deformation produced higher susceptibility at confined microstructure regions
AbstractScanning Kelvin Probe Force Microscopy (SKPFM) of annealed and cold-rolled grade 2205 duplex stainless steel has been correlated with microstructure analysis using Electron BackScattered Diffraction (EBSD). In annealed microstructure Volta potential differences indicated micro-galvanic coupling between ferrite and austenite reasoning selective dissolution of ferrite. The introduction of cold work reduced the difference between both phases, but the development of local extremes in Volta potential was observed. Microstructure analysis revealed the presence of larger misorientation concentrations at these sites, which can explain the changes in observed corrosion behaviour, from selective dissolution in the annealed condition to localised corrosion attack after cold-rolling.
Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.