The syntheses and reactivity of seven different ruthenium-based metathesis catalysts are described. Ru(CF3COO)2(PCy3)(=CH-2-(2-PrO)C6H4) (1), Ru(CF3COO)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (2), and Ru(CF3COO)2(PCy(3))(1,3-dimesityldihydroimidazolin-2-ylidene)(=CHC6H5) (3) were prepared via chlorine exchange by reacting RuCl2(PCy3)2(=CH-2-(2-PrO)C6H4), RuCl2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4), and RuCl2(PCy3)(1,3-dimesityldihydroimidazolin-2-ylidene)(=CHC6H5), respectively, with silver trifluoroacetate (Cy =cyclohexyl). In analogy, Ru(CF3CF2COO)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (4) and Ru(CF3CF2CF2COO)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (5) were prepared from RuCl2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) via reaction with CF3CF2COOAg and CF3CF2CF2COOAg, respectively. Ru(C6F5COO)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (6) and Ru(C6F5O)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (7) were prepared from RuCl2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) via reaction with C6F5COOTl and C6F5OTl, respectively. Supported catalysts Ru(PS-DVB-CH2OOCCF2CF2CF2COO)(CF3COO)(PCy3)(1,3-dimesityldihydroimidazolin-2-ylidene)(=CHC6H5) (8), Ru(PS-DVB-CH2OOCCF2CF2CF2COO)(CF3COO)(PCy3)(=CH-2-(2-PrO)C6H4) (9), and Ru(PS-DVB-CH2OOCCF2CF2CF2COO)(CF3COO)(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (10) were synthesized by reaction of RuCl2(PCy3)(1,3-dimesityldihydroimidazolin-2-ylidene)(=CHC6H5), RuCl2(PCy3)(=CH-2-(2-PrO)C6H4), and RuCl2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4), respectively, with a perfluoroglutaric acid-derivatized poly(styrene-co-divinylbenzene) (PS-DVB) support (silver form). Halogen exchange in PCy3-containing systems had to be carried out in dichloromethane in order to suppress precipitation of AgCl.PCy3. The reactivity of all new catalysts in ring-closing metathesis (RCM) of hindered electron-rich and -poor substrates, respectively, at elevated temperature (45 degrees C) was compared with that of existing systems. Diethyl diallylmalonate (DEDAM, 11), diethyl allyl(2-methylallyl)malonate (12), N,N-diallyl-p-toluenesulfonamide (13), N-benzyl-N-but-1-en-4-ylbut-2-enecarboxylic amide (14), and N-allyl-N-(1-carboxymethyl)but-3-en-1-yl-p-toluenesulfonamide (15) were used as educts. Supported catalysts were prepared with high loadings (2.4, 22.1, and 160 mg of catalyst/g PS-DVB for 8, 9, and 10, respectively). Catalyst 8 showed higher and catalysts 9 and 10 sowed significantly reduced activities in RCM compared to their homogeneous analogues. Thus, with 8, turnover numbers (TONs) up to 4200 were realized in stirred-batch (carousel) RCM experiments. To elucidate the nature of the bound species, catalysts 8-10 were subjected to 13C- and 31P-MAS NMR spectroscopy. These investigations provided evidence for the proposed structures. Leaching of ruthenium into the reaction mixture was low, resulting in rutheni...
Products of an oxidative coupling were obtained in the gold(III)‐catalyzed cycloisomerization of tertiary allenyl carbinols. The absence of reduced organic products and an increase of these coupling products with the amount of gold(III) catalyst suggests that gold(III) is reduced in situ, possibly to gold(I) catalysts which were also shown to be active for these transformations. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.